
‭CS 3100 / In-class Activity 5, Making Change with Dynamic Programming‬

‭Name‬ ‭Computing ID‬

‭Your Name:‬

‭In class:‬ ‭You must work in teams of 2, 3 or 4. Each‬‭person writes answers and turns in the sheet at end of class.‬

‭Missed class?‬ ‭Work alone and answer to the best of‬‭your ability. Submit to GradeScope by 9am on the 2nd day‬

‭after in-class activity.‬

‭1.‬ ‭Write the greedy choice property for the greedy algorithm for making change:‬

‭2‬‭. If your coin denominations are [25, 13, 7, 5, 1], find a change-amount > 5 where the greedy approach will‬

‭correctly give the smallest number of coins.‬

‭3‬‭. If your coin denominations are [25, 13, 7, 5, 1], find a change-amount > 5 where the greedy approach will NOT‬

‭correctly give the smallest number of coins.‬

‭4‬‭. Let’s think about dynamic programming for this‬‭problem. We ask you to think about “the last thing you would‬

‭do.” For this problem, that would be the last coin you choose. Let’s say that Change(𝑛) is the minimum number‬

‭of coins needed to give change for 𝑛 cents. If you have these coin denominations [25, 11, 10, 5, 1] and a quarter‬

‭is the last coin you pick, fill in the blanks to show what the value would be if we knew that quarter was part of‬

‭the solution:‬

‭Change(𝑛) = Change(_________) + ____‬

‭5.‬ ‭What’s the value of the base case, Change(‬‭0‬‭)?‬

‭6‬‭. We don’t know that we’ll pick a quarter or some other coin, but as we did with other dynamic programming‬

‭solutions, our recursive definition of the solution will list all options and pick the best. Before we do that, note‬

‭that we can’t pick a quarter if 𝑛<25.‬

‭Below we’ve started to list the options for the result of choosing one of the coins. You can see the minimum of‬

‭the subproblems’ solutions is being chosen as the solution for the value n. We’ve shown that one option is‬

‭choosing a quarter, but only if the amount is 25 cents or larger.‬

‭For you to do:‬ ‭list the remaining options for the other coins below the subproblem using a quarter, to the right‬

‭of the bracket that’s taking the min of these values. Be sure to include a “test” like with did for the quarter’s‬

‭case.‬

‭7‬‭. Let’s start to think about a top-down algorithm that uses memoization to solve this. We’ll use an array‬‭memo‬

‭for the memoization table. If n is the amount of change and k is the number of coin denominations, what will be‬

‭the size of the memoization array‬‭memo‬‭?‬

‭8.‬‭Below is incomplete Python-like code for the top-down DP solution to this. Try to fill in the blanks to make this‬

‭code complete. Also, talk with your group and see if you can write the time-complexity in terms of n and k.‬

‭denom = [‬‭25‬‭,‬‭10‬‭,‬‭11‬‭,‬‭5‬‭,‬‭1‬‭]‬
‭amount =‬‭15‬
‭memo = ???‬‭# explain what this is initialized to‬
‭num_coins = change(amount, denom, memo)‬

‭def‬‭change‬‭(n, denom, memo):‬
‭if‬‭n ==‬‭0‬‭:‬

‭return‬‭______‬

‭if‬‭memo[n] ___________ :‬
‭return‬‭___________‬

‭min = sys.maxsize‬‭# a really big number‬
‭for‬‭i‬‭in‬‭range‬‭(‬‭len‬‭(denom)):‬

‭if‬‭n >= denom[i]:‬
‭result = change(_____________, denom, memo) +‬‭1‬
‭if‬‭result < min:‬

‭_________________‬

‭memo[n] = ______________‬
‭return‬‭min‬

