
 CS 3100 / In-class Activity 1, Warmup and Review 

 Name  Computing ID 

 Your Name: 

 In class:  You must work in teams of 2, 3 or 4.  Each  person writes answers and turns in sheet at end of class.. 

 Missed class?  Work alone and answer to the best of  your ability. Submit to GradeScope by 9am on the 2nd day 

 after in-class activity. 

 1.  If  and  , which grows more quickly?  (That is, which would be a “worse”  𝑓 ( 𝑛 ) =  𝑛  1 . 5 ( ㏒  𝑛 ) 2     𝑔 ( 𝑛 ) =  𝑛  2  ㏒  𝑛 
 time-complexity.)  Express your answer in terms of one of the order-classes we’ve studied, i.e. something in a 

 form like  but with something other than Big-Theta.  Write that in the box below:  𝑓 ( 𝑛 )   =    Θ( 𝑔 ( 𝑛 ))

 Also, think and talk about what definition you’d use to prove your answer mathematically. (You don’t have to 

 actually show that work on this sheet!) 

 2.  Consider the following problem. It can be solved  using search algorithms you’ve studied, perhaps using sort 

 algorithms you’ve studied.  In the box below, write the Big-Oh order class (in terms of n, m and k) for a solution 

 that uses sorting.  (You can assume worst-case behavior if that helps you think about this.) 

 A.  In a list of  items, you execute  searches (queries), where each query looks for a target value  t  i  in the  𝑛  𝑚 
 list. If it is, we’ll store the location  p  i  where it was found in the list  that’s searched.  Assume  .  𝑚    <  𝑛 

 B.  At the end of the  queries, some new value  n  i  replaces each of the target values that were found,  𝑚 
 i.e.  list[p  i  ] = n  i  for all the  t  i  targets that were found.  (In other words,  each successful query causes 

 an update to the list.) 

 C.  The previous steps are repeated  times.  𝑘 

 3. In CS2100 you saw lower-bounds proofs about sorting where a logical argument (proof) was used to show that 

 it was impossible for any sorting algorithm to do fewer operations than some lower bound value.  (E.g. no 

 comparison sort can do fewer than  comparisons.)  Let’s do a simpler lower bounds proof! Θ( 𝑛  ㏒  𝑛 )
 The problem is:  Find the largest value in an unsorted list with no duplicate values.  Give a logical argument that 

 no algorithm that compares pairs of list-items can correctly solve this problem in fewer than  comparisons.  𝑛 −  1 
 (  Hints:  A single comparison produces a “winner” and a “loser”.  What does it mean for an item to be the largest 

 in a list?)  Write your answer here and continue on the top of the next page if you need more space! 



 4.  Talk among your group to remind yourself how  proof  by induction  works in general.  Next, we’ll use this 

 technique to argue that Quicksort is correct. 

 We’ll let you assume that the partition operation works correctly.  Recall that  partition(list,first,last) 

 returns the location p of an item in the sublist  list[first:last]  ,  where all items in positions before p are < 

 list[p]  , and all items after position p are >  list[p]  .  The item at location p is the pivot-value, and partition 

 puts it into its correct position but doesn’t sort what’s before it or after it.  After partition is done, Quicksort is 

 called recursively on the sublists before and after the pivot-value. 

 Part A.  Let’s help you through this. In induction  we start with  the base case  .  If n=1 (i.e. there’s  one item in the 

 list), explain why partition and quicksort produce the correct answer for that list of size 1. 

 Part B.  For the inductive step, we will assume the  inductive hypothesis  that Quicksort works correctly  for any list 

 that has size  less than  . Now we need to use this assumption to make an argument that, for a list of size  , the  𝑛  𝑛 
 algorithm produces a list that’s sorted.  Assuming that partition works correctly and the inductive hypothesis is 

 true, write an argument below that shows, for a list of size  , the call to partition and the recursive calls to  𝑛 
 Quicksort correctly sorts that list. 


