
 CS 3100 / In-class Activity 1, Warmup and Review

 Name Computing ID

 Your Name:

 In class: You must work in teams of 2, 3 or 4. Each person writes answers and turns in sheet at end of class..

 Missed class? Work alone and answer to the best of your ability. Submit to GradeScope by 9am on the 2nd day

 after in-class activity.

 1. If and , which grows more quickly? (That is, which would be a “worse” 𝑓 (𝑛) = 𝑛 1 . 5 (㏒ 𝑛) 2 𝑔 (𝑛) = 𝑛 2 ㏒ 𝑛
 time-complexity.) Express your answer in terms of one of the order-classes we’ve studied, i.e. something in a

 form like but with something other than Big-Theta. Write that in the box below: 𝑓 (𝑛) = Θ(𝑔 (𝑛))

 Also, think and talk about what definition you’d use to prove your answer mathematically. (You don’t have to

 actually show that work on this sheet!)

 2. Consider the following problem. It can be solved using search algorithms you’ve studied, perhaps using sort

 algorithms you’ve studied. In the box below, write the Big-Oh order class (in terms of n, m and k) for a solution

 that uses sorting. (You can assume worst-case behavior if that helps you think about this.)

 A. In a list of items, you execute searches (queries), where each query looks for a target value t i in the 𝑛 𝑚
 list. If it is, we’ll store the location p i where it was found in the list that’s searched. Assume . 𝑚 < 𝑛

 B. At the end of the queries, some new value n i replaces each of the target values that were found, 𝑚
 i.e. list[p i] = n i for all the t i targets that were found. (In other words, each successful query causes

 an update to the list.)

 C. The previous steps are repeated times. 𝑘

 3. In CS2100 you saw lower-bounds proofs about sorting where a logical argument (proof) was used to show that

 it was impossible for any sorting algorithm to do fewer operations than some lower bound value. (E.g. no

 comparison sort can do fewer than comparisons.) Let’s do a simpler lower bounds proof! Θ(𝑛 ㏒ 𝑛)
 The problem is: Find the largest value in an unsorted list with no duplicate values. Give a logical argument that

 no algorithm that compares pairs of list-items can correctly solve this problem in fewer than comparisons. 𝑛 − 1
 (Hints: A single comparison produces a “winner” and a “loser”. What does it mean for an item to be the largest

 in a list?) Write your answer here and continue on the top of the next page if you need more space!

 4. Talk among your group to remind yourself how proof by induction works in general. Next, we’ll use this

 technique to argue that Quicksort is correct.

 We’ll let you assume that the partition operation works correctly. Recall that partition(list,first,last)

 returns the location p of an item in the sublist list[first:last] , where all items in positions before p are <

 list[p] , and all items after position p are > list[p] . The item at location p is the pivot-value, and partition

 puts it into its correct position but doesn’t sort what’s before it or after it. After partition is done, Quicksort is

 called recursively on the sublists before and after the pivot-value.

 Part A. Let’s help you through this. In induction we start with the base case . If n=1 (i.e. there’s one item in the

 list), explain why partition and quicksort produce the correct answer for that list of size 1.

 Part B. For the inductive step, we will assume the inductive hypothesis that Quicksort works correctly for any list

 that has size less than . Now we need to use this assumption to make an argument that, for a list of size , the 𝑛 𝑛
 algorithm produces a list that’s sorted. Assuming that partition works correctly and the inductive hypothesis is

 true, write an argument below that shows, for a list of size , the call to partition and the recursive calls to 𝑛
 Quicksort correctly sorts that list.

