CS 3100

Data Structures and Algorithms 2
Lecture 9: D&C, Master Theorem

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4t edition:
* Section 4.5

Announcements

 Upcoming dates
e PS2 due September 29 (Friday) at 11:59pm
e PA2 due October 8 (Sunday) at 11:59pm
e Quiz1and 2, October 5 (in-class)

* Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide: -

* Break the problem into multiple
subproblems, each smaller instances of the
original

-

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* |f the subproblems are “small”:
* Solve them directly (base case)

ﬁ When is this an
effective strategy?

Combine:

* Merge solutions to subproblems to obtain H E »

solution for original problem

Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: D(n) time
Conquer: Recurse on smaller problems of size s4, ..., Sg
Combine: C(n) time

e T(n) =D(n) + + C(n)

Recurrence Solving Techniques

Tree

get a picture of recursion

7/ Guess/Check

guess and use induction to prove

“Cookbook”

MAGIC!

Substitution

substitute in to simplify

Observation

Divide: D(n) time
Conquer: Recurse on smaller problems of size sq, ..., Sk

Combine: C(n) time
e Tm) =D(n) + + C(n)

Many divide and conquer algorithms have recurrences are of form:

* T(n) =a-T(n/b)+f(n) a and b are constants

Mergesort: T(n) = 2T(n/2) + n
Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n
Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

General Recurrence

T(Tl) = aT(n/b) + f(n) Number of Cost of

subproblems subproblem
n | rm 1 f(n)
a f(n/b)

k levels

@ @ f(/b?)

f(@@) ak f(n/b"")

General Recurrence

3. Use asymptotic notation to simplify Number of Cost of
T(n) — aT(n/b) + f(n) subproblems subproblem
1 f(n)
How many levels?
n
Problem size at k™ level: X a f(n/b)

Basecase: n=1

a® f(n/b?)

At level k, it should be the case that bik =1

n=>bk=>k=1log,n

a” f(n/b*)

General Recurrence

3. Use asymptotic notation to simplify Number of Cost of
T(n) — aT(n/b) + f(n) subproblems subproblem

1 fn)

k =log,n
a f(n/b)
What is the cost?
Cost at level i: a'- f (E)
| b a? f(n/b?)
logp n

Total cost: T(n) = z a f(%) ak f(n/bk)

=0

Three Cases

7 = 0+)+ () + 21 () -+t (1)

k =log,n
Case 1: (] Ve D
Most work happens
at the leaves
(8 /)
Case 2:
Work happens
consistently throughout
4)
Case 3:
Most work happens
at top of tree D
- / B 10

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € O(n‘s_e) for some constant € > 0 T(n) € G)(n5)

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘g)
Case 2 f(n) € G)(n5) T(n) € @(n5 log n)

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a
| Requirementonf | Implication
Casel f(n) € 0(n5_8) for some constant & > 0 T(n) € G)(nS)
Case 2 f(n) € 0(n®) T(n) € O(n° logn)
f(n) e Q(n5+8) for some constante > 0
AND
T(n) € 0(f(n))

Case 3
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

Master Theorem Example 1

T(n) =2T(n/2) +n [Merge Sort]

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 1

T(n) =2T(n/2)+n [Merge Sort]

Step 1: Compute o =log, a =log, 2 =1

Step 2: Compare n° and f(n)

f(n)=ne @(n‘s)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 1

5 =1 T(n)=2T(n/2) +n [Merge Sort]
f(n) =ne @(n5)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 1

5 =1 T(n)=2T(n/2) +n [Merge Sort]
f(n) =n € 6(n’) T(n) = 0(nlogn)

- Requirement on f Implication

Case 2 f(n) € @(n5) T(n) € @(n5 log n)

Master Theorem Example 1 (Visually)

T(n) =2T(n/2)+n

n n)
n
n/2 "2 n/2 e n
"n//4\l 4 ‘(/4\ n/4
n/4 n/4 " n/4 n/4 n

1

1 ! L. 1 1

1 1 1 1 1 n J

1

Cost is consistent across levels =
Cost increases by log factor (= number of levels)

24

Master Theorem Example 2

T(n) =4T(n/2) + 5n

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 2

T(n) =4T(n/2) + 5n

Step 1: Compute 0 = log, a = log, 4 = 2

Step 2: Compare n° and f(n)
f(n) =5n€0(n*™") = 0(n°)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 2

5 =2 T(n) =4T(n/2) + 5n
f(n) =5n € 0(n°1)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 2

5 =2 T(n) =4T(n/2) + 5n
f(n) =5n€ 0(n°1) T(n) = 0(n%)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘S)

Master Theorem Example 2 (Visually)

T(n) = 4T(n/2) + 5n

()

n o1 5n
o]

> n
s, 0

2 n

: : : : . |

1/l a 15151515151515 29821 . 5n D

Master Theorem Example 2 (Visually)

T(n) =4T(n/2) + 5n

O
. . . . 5n
Cost is increasing with the recursion depth
(due to large number of subproblems) 4 - D
— 0 n
Most of the work happening in the leaves
o,
2 n

Master Theorem Example 3

T(n) =3T(n/2) + 8n [Karatsubal]

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 3

T(n)=3T(n/2)+ 8n [Karatsubal]

Step 1: Compute § = log, a = log- 3
Step 2: Compare n° and f(n)

f(n) = 8n € 0(n'°8237¢) for constant € > log, 3 —1 > 0
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 3

§ = log, 3 T(n)=3T(n/2)+ 8n [Karatsubal]
f(n) = 5n € 0(n°¢)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 3

§ = log, 3 T(n)=3T(n/2)+ 8n [Karatsubal]
f(n) =5n € 0(n°~*) T(n) = ©(n'°82 %)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘S)

Master Theorem Example 4

T(n) =2T(n/2) + 15n3

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 4

T(n) =2T(n/2) + 15n°

Step 1: Compute o =log, a =log, 2 =1

Step 2: Compare n° and f(n)
f(n) = 15n3 € Q(n'*?) = Q(n°*?)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

- Requirement on f Implication

f(n) € Q(n5+8) for some constant e > 0
AND

Case 3
af (g) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

Important: For Case 3, need to additionally check that
2f(n/2) < cf(n) for constant ¢ < 1 and sufficiently large n

2f(n/2) =30(n/2)° = ?nfﬂ < %(151’13)

39

Master Theorem Example 4

5=1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?) T(n) = 0(n>)

- Requirement on f Implication

f(n) € Q(n5+8) for some constant e > 0
AND

Case 3
af (g) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 3 (Visually)

T(n) =2T(n/2) + 15n3

M\ 15 (g) 5 Z) Z ’ 15n3 > 10g2 n

Master Theorem Example 3 (Visually)

T(n) =2T(n/2) + 15n3

Cost is decreasing with the recursion depth (5,3
(due to high non-recursive cost)

-
-
. 15n3
Most of the work happening at the top i D

15n3 > logz n
16

15log, n D

Recurrence Solving Techniques

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies

Example:
P T(n) = 2T(Hn) +log, n

44

k levels

Tree Method

T(n) = 2T(\n) + log, n

log, n

Number of
subproblems

1

Cost of

subproblem

log, n

log, n
2
log, n
4

log, n

45

Tree Method

T(n) =2THn) + log, n Number of Cost of

subproblems subproblem
Each iteration, problem size 1 lng n
How many levels? goes from n to n'/2

A 5 log, n

Problem size at k™ level: p1/2 5
Base case: n = 2 A log, n

. 119k 4

At level k, it should be the case thatn /2% =2

n/2* — 9 => —log,n=1 K log, n

2k 2 ok

= 2* =log,n = k = log, log,n

Tree Method

T(n) =2THn) + log, n Number of Cost of

subproblems subproblem
1 log, n
k = log, log, n

g2 1082 , log, 1

What is the cost? .
. log, n log, n

Cost at level i: 2 o0 log, n 4 42
log, log, n Zk 1Og2 n

Total cost: T(n) = z log, n = (log, n)(log, log, n) 2k

=0

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies

Example:
T(n) =2T(/n) +log, n

Consider the following substitution: let n = 2™ (i.e., m = log, n)

m
T(2™) = 2T (27) +m Rewrite recurrence in terms of m
S(m) = 28 (%) +m Consider substitution S(m) = T(2™)
= S(m) = 0(mlogm) Case 2 of Master Theorem

= T(n) = O(lognloglogn) Substitute back for T and n

