
CS 3100
Data Structures and Algorithms 2

Lecture 9: D&C, Master Theorem

Co-instructors:  Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Section 4.5



Announcements

• Upcoming dates
• PS2 due September 29 (Friday) at 11:59pm
• PA2 due October 8 (Sunday) at 11:59pm
• Quiz 1 and 2, October 5 (in-class)

• Course email (comes to both professors and head TAs):

  cs3100@cshelpdesk.atlassian.net
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Divide and Conquer

Divide: 
• Break the problem into multiple 

subproblems, each smaller instances of the 
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively
• If the subproblems are “small”:

• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain 

solution for original problem

When is this an 
effective strategy?

[CLRS Chapter 4]



Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠!, … , 𝑠"
Combine: 𝐶(𝑛) time
Recurrence: 
• 𝑇 𝑛 = 𝐷 𝑛 + ∑!∈[$]𝑇(𝑠!) + 𝐶(𝑛)



Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify



Observation

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠&, … , 𝑠$
Combine: 𝐶(𝑛) time
Recurrence: 

• 𝑇 𝑛 = 𝐷 𝑛 + ∑!∈[$]𝑇(𝑠!) + 𝐶(𝑛)

Many divide and conquer algorithms have recurrences are of form:
• 𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑓(𝑛)

Mergesort: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛
Divide and Conquer Multiplication: 𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛
Karatsuba Multiplication: 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛
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𝑎 and 𝑏 are constants



General Recurrence
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𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛
𝑏

𝑓
𝑛
𝑏𝑓

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑓
𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏!…𝑛

𝑏8
𝑛
𝑏8

𝑛
𝑏8

𝑛
𝑏8

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎8

𝑎"

Cost of 
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏8

Number of 
subproblems

𝑘 levels

𝑓 ⁄𝑛 𝑏"



General Recurrence
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𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓(𝑛)
3. Use asymptotic notation to simplify

How many levels?
Problem size at 𝑘-. level:

Base case:

At level 𝑘, it should be the case that /0! = 1

𝑛 = 𝑏! ⇒ 𝑘 = log" 𝑛

𝑛
𝑏$

𝑛 = 1

1

𝑎

𝑎8

𝑎"

Cost of 
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏8

𝑓 ⁄𝑛 𝑏"

Number of 
subproblems



General Recurrence
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𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓(𝑛)
3. Use asymptotic notation to simplify

1

𝑎

𝑎8

𝑎"

Cost of 
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏8

𝑓 ⁄𝑛 𝑏"

Number of 
subproblems

What is the cost?

Cost at level 𝑖: 𝑎: ⋅ 𝑓
𝑛
𝑏:	

Total cost: 𝑇 𝑛 = 4
:<=

>?@! A

𝑎: ⋅ 𝑓
𝑛
𝑏:

𝑘 = log" 𝑛



Three Cases
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𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎1𝑓

𝑛
𝑏1

+ 𝑎2𝑓
𝑛
𝑏2

+⋯+ 𝑎$𝑓
𝑛
𝑏$

Case 1:
Most work happens 

at the leaves

Case 2:
Work happens  

consistently throughout

Case 3:
Most work happens 

at top of tree

𝑘 = logB 𝑛



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log" 𝑎 

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log" 𝑎 

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log" 𝑎 

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

20𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 

[Merge Sort]



Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

21𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 

Step 1: Compute 𝛿 = log! 𝑎 = log" 2 = 1

Step 2: Compare 𝑛#  and 𝑓(𝑛)

𝑓 𝑛 = 𝑛 ∈ Θ 𝑛#

Step 3: Check table

[Merge Sort]



Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛
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𝑓 𝑛 = 𝑛 ∈ Θ 𝑛#
𝛿 = 1 [Merge Sort]

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

23

𝑓 𝑛 = 𝑛 ∈ Θ 𝑛# 𝑇 𝑛 = Θ(𝑛 log 𝑛)
𝛿 = 1 [Merge Sort]

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 1 (Visually)

𝑛

𝑇 𝑛 = 2𝑇 ⁄𝑛 2	 + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

log8 𝑛
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Cost is consistent across levels ⇒
Cost increases by log factor (≈ number of levels)



Master Theorem Example 2

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

25𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 



Master Theorem Example 2

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

26𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 

Step 1: Compute 𝛿 = log! 𝑎 = log" 4 = 2

Step 2: Compare 𝑛#  and 𝑓(𝑛)

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛"$% = 𝑂 𝑛#$%

Step 3: Check table



Master Theorem Example 2
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𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛#$%
𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛𝛿 = 2

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 2
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𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛#$% 𝑇 𝑛 = Θ(𝑛")

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛𝛿 = 2

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 2 (Visually)

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2>?@" A ⋅ 5𝑛
⋮

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛



Master Theorem Example 2 (Visually)

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2>?@" A ⋅ 5𝑛
⋮

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

Cost is increasing with the recursion depth 
(due to large number of subproblems)

Most of the work happening in the leaves



Master Theorem Example 3

𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

31𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 

[Karatsuba]



Master Theorem Example 3

𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

32𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 

[Karatsuba]

Step 1: Compute 𝛿 = log! 𝑎 = log" 3

Step 2: Compare 𝑛#  and 𝑓(𝑛)

𝑓 𝑛 = 8𝑛 ∈ 𝑂 𝑛&'(! )$*  for constant 𝜀 > log" 3 − 1 > 0
Step 3: Check table



Master Theorem Example 3
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𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛#$*
𝛿 = log" 3 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛 [Karatsuba]

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 3
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𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛#$*
𝛿 = log" 3 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛 [Karatsuba]

𝑇 𝑛 = Θ(𝑛&'(! ))
Requirement on 𝒇 Implication

Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 4

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)

35𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 



Master Theorem Example 4

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)

36𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = log! 𝑎 

Step 1: Compute 𝛿 = log! 𝑎 = log" 2 = 1

Step 2: Compare 𝑛#  and 𝑓(𝑛)

𝑓 𝑛 = 15𝑛) ∈ Ω 𝑛%+" = Ω 𝑛#+"

Step 3: Check table



Master Theorem Example 4
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𝑓 𝑛 = 15𝑛) ∈ Ω 𝑛#+"

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

𝛿 = 1 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)



Master Theorem Example 4
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𝑓 𝑛 = 15𝑛) ∈ Ω 𝑛#+"

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

𝛿 = 1 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)



Master Theorem Example 4
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𝑓 𝑛 = 15𝑛) ∈ Ω 𝑛#+"
𝛿 = 1

Important: For Case 3, need to additionally check that 
2𝑓 ⁄𝑛 2 ≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and sufficiently large 𝑛 

2𝑓 ⁄𝑛 2 = 30 ⁄𝑛 2 ) =
30
8 𝑛) ≤

1
4 15𝑛)

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)



Master Theorem Example 4
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𝑓 𝑛 = 15𝑛) ∈ Ω 𝑛#+"

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛CDE  for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛C

Case 2 𝑓 𝑛 ∈ Θ 𝑛C 𝑇 𝑛 ∈ Θ 𝑛C log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛CFE  for some constant 𝜀 > 0
 AND

𝑎𝑓 A
B
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

𝛿 = 1
𝑇 𝑛 = Θ(𝑛))

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)



Master Theorem Example 3 (Visually)

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

15𝑛"

15
𝑛
2

"
15

𝑛
2

"

15
𝑛
4

"
15

𝑛
4

"
15

𝑛
4

"

15
𝑛
4

"

15 15 15 1515 15

15𝑛2

15𝑛2

4
15𝑛2

16

15 log1 𝑛

log8 𝑛
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𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)



Master Theorem Example 3 (Visually)

15𝑛2

15𝑛2

4
15𝑛2

16

15 log1 𝑛

log8 𝑛
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𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛)

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top



Recurrence Solving Techniques
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Tree

? Guess/Check

“Cookbook”

Substitution



Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our 
other methods applies

Example:
𝑇 𝑛 = 2𝑇 𝑛 + log8 𝑛

44



Tree Method

𝑇 𝑛 = 2𝑇 𝑛 + log8 𝑛
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𝑛

𝑛 𝑛

𝑛 𝑛 𝑛 𝑛

… … … …

2 2 2 … 2 2 2

log! 𝑛

1
2 log! 𝑛

1
2 log! 𝑛

1
4 log! 𝑛

1
4 log! 𝑛

1
4 log! 𝑛

1
4 log! 𝑛

1 1 1 11 1

1

2

4

2"

Cost of 
subproblem

log8 𝑛

log8 𝑛
2

log8 𝑛
4

Number of 
subproblems

log8 𝑛
2"

𝑘 levels



Tree Method

How many levels?
Problem size at 𝑘-. level:

Base case:

At level 𝑘, it should be the case that 𝑛&/1! = 2

𝑛 ⁄& 1! = 2

𝑛&/1!

𝑛 = 2

𝑇 𝑛 = 2𝑇 𝑛 + log8 𝑛

1

2

4

2"

Cost of 
subproblem

log8 𝑛

log8 𝑛
2

log8 𝑛
4

Number of 
subproblems

log8 𝑛
2"

Each iteration, problem size 
goes from 𝑛 to 𝑛&/(

⇒ 𝑘 = log1 log1 𝑛⇒ 2$ = log1 𝑛

⇒
1
2$
log1 𝑛 = 1



Tree Method

𝑘 = log# log# 𝑛

What is the cost?

Cost at level 𝑖: 2: ⋅
log8 𝑛
2:	

= log8 𝑛

Total cost: 𝑇 𝑛 = ;
!;<

=>?" =>?" /

log1 𝑛 = (log1 𝑛) log1 log1 𝑛

𝑇 𝑛 = 2𝑇 𝑛 + log8 𝑛

1

2

4

2"

Cost of 
subproblem

log8 𝑛

log8 𝑛
2

log8 𝑛
4

Number of 
subproblems

log8 𝑛
2"



Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our 
other methods applies
Example:

𝑇 𝑛 = 2𝑇 𝑛 + log8 𝑛

Consider the following substitution: let 𝑛 = 2G  (i.e.,	𝑚 = log8 𝑛)

𝑆 𝑚 = 2𝑆
𝑚
2

+𝑚

𝑇 2G = 2𝑇 2
G
8 +𝑚 Rewrite recurrence in terms of 𝑚

Case 2 of Master Theorem⇒ 𝑆 𝑚 = Θ(𝑚 log𝑚)

Substitute back for 𝑇 and 𝑛⇒ 𝑇 𝑛 = Θ(log 𝑛 log log 𝑛)

Consider substitution 𝑆 𝑚 = 𝑇 2G


