CS 3100

Data Structures and Algorithms 2
Lecture 9: D&C, Master Theorem

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4t edition:
* Section 4.5



Announcements

 Upcoming dates
e PS2 due September 29 (Friday) at 11:59pm
e PA2 due October 8 (Sunday) at 11:59pm
e Quiz1and 2, October 5 (in-class)

* Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net



Divide and Conquer

[CLRS Chapter 4]

Divide: -

* Break the problem into multiple
subproblems, each smaller instances of the
original

-

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* |f the subproblems are “small”:
* Solve them directly (base case)

ﬁ When is this an
effective strategy?

Combine:

* Merge solutions to subproblems to obtain H E »

solution for original problem




Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: D(n) time
Conquer: Recurse on smaller problems of size s4, ..., Sg
Combine: C(n) time

e T(n) =D(n) + + C(n)



Recurrence Solving Techniques

Tree

get a picture of recursion

7/ Guess/Check

guess and use induction to prove

“Cookbook”

MAGIC!

Substitution

substitute in to simplify




Induction (Review)

Goal: Vk € N, P(k) holds

. Technically, called
Base case(s): P(1) holds
Hypothesis: Vx < x4, P(x) holds

Inductive step: P(1),..,P(xy) = P(xy + 1)



Guess and Check Blueprint

Show: T(n) = 0(g(n))
Consider: g,.(n) = c - g(n) for some constant ¢

Goal: show dn, such that vn > n,, T(n) < g.(n)
 (definition of big-O)

Technique: Induction
* Base cases:

* Show T (1) < g.(1) (sometimes, may need to consider additional base cases)

* Hypothesis:

* Vn<x,T(n) < g.(n) Need to ensure that in inductive
* Inductive step: step, can either appeal to a base

e Showthat T(xo + 1) < g.(xo + 1) case or to the inductive hypothesis




Karatsuba Analysis using Guess and Check

T(n) =3T(n/2) + 8n

Goal: T(n) < 3000 nt6 = 0(n'9)
Base case: T(1) =8 <3000
Hypothesis: vn < %, T(n) < 30000

Inductive step: Show T'(xy + 1) < 3000(x, + 1)1



Karatsuba Guess and Check (Loose)

T(n) = 3T(n/2) + 8n
Hypothesis: Vn < x,: T(n) < 3000n'°

Show: T'(x, + 1) < 3000(x, + 1)1¢

Xo + 1
T(xg+1)= 3T( > ) +8(xo + 1) Recurrence definition

xo + 1\
<3 (30()()( 0 > ) ) + 8(xp + 1) Inductive hypothesis
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Karatsuba Guess and Check (Loose)

< 3000(x, + 1)%
Show: T'(xy, + 1) < 3000(x, + 1)%°

Recurrence definition

Inductive hypothesis

Vx > 0:x16 > x

Distributive property

9000

~15 +8 < 3000
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Master Theorem for Recurrences

Jon Bentley Dorothea Blostein James B. Saxe
(née Haken)



Observation

Divide: D(n) time
Conquer: Recurse on smaller problems of size sq, ..., Sk

Combine: C(n) time
e Tm) =D(n) + + C(n)

Many divide and conquer algorithms have recurrences are of form:

* T(n) =a-T(n/b)+f(n) a and b are constants

Mergesort: T(n) = 2T(n/2) + n
Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n
Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

12



General Recurrence

T(Tl) = aT(n/b) + f(n) Number of Cost of

subproblems subproblem
n | rm 1 f(n)
a f(n/b)

k levels

@ @ f(/b?)

f(@@) ak f(n/b"")




General Recurrence

3. Use asymptotic notation to simplify Number of Cost of
T(n) — aT(n/b) + f(n) subproblems subproblem
1 f(n)
How many levels?
n
Problem size at k™ level: X a f(n/b)

Basecase: n=1

a® f(n/b?)

At level k, it should be the case that bik =1

n=>bk=>k=1log,n

a” f(n/b*)



General Recurrence

3. Use asymptotic notation to simplify Number of Cost of
T(n) — aT(n/b) + f(n) subproblems subproblem

1 fn)

k =log,n
a f(n/b)
What is the cost?
Cost at level i: a'- f (E)
| b a?  f(n/b?)
logp n

Total cost: T(n) = z a f(%) ak f(n/bk)

=0



Three Cases

7 = 0+ )+ () + 21 () -+t (1)

k =log,n
Case 1: (] Ve D
Most work happens
at the leaves
(8 /)
Case 2:
Work happens
consistently throughout
4 )
Case 3:
Most work happens
at top of tree D
- / B 16




Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € O(n‘s_e) for some constant € > 0 T(n) € G)(n5)



Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘g)
Case 2 f(n) € G)(n5) T(n) € @(n5 log n)



Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a
| Requirementonf | Implication
Casel f(n) € 0(n5_8) for some constant & > 0 T(n) € G)(nS)
Case 2 f(n) € 0(n®) T(n) € O(n° logn)
f(n) e Q(n5+8) for some constante > 0
AND
T(n) € 0(f(n))

Case 3
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n



Master Theorem Example 1

T(n) =2T(n/2) +n [Merge Sort]

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 1

T(n) =2T(n/2)+n [Merge Sort]

Step 1: Compute o =log, a =log, 2 =1

Step 2: Compare n° and f(n)

f(n)=ne @(n‘s)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 1

5 =1 T(n)=2T(n/2) +n [Merge Sort]
f(n) =ne @(n5)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))



Master Theorem Example 1

5 =1 T(n)=2T(n/2) +n [Merge Sort]
f(n) =n € 6(n’) T(n) = 0(nlogn)

- Requirement on f Implication

Case 2 f(n) € @(n5) T(n) € @(n5 log n)




Master Theorem Example 1 (Visually)

T(n) =2T(n/2)+n

n n )
n
n/2 "2 n/2 e n
"n//4\l 4 ‘(/4\ n/4
n/4 n/4 " n/4 n/4 n

1

1 ! L. 1 1

1 1 1 1 1 n J

1

Cost is consistent across levels =
Cost increases by log factor (= number of levels)

30



Master Theorem Example 2

T(n) =4T(n/2) + 5n

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 2

T(n) =4T(n/2) + 5n

Step 1: Compute 0 = log, a = log, 4 = 2

Step 2: Compare n° and f(n)
f(n) =5n€0(n*™") = 0(n°)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 2

5 =2 T(n) =4T(n/2) + 5n
f(n) =5n € 0(n°1)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))



Master Theorem Example 2

5 =2 T(n) =4T(n/2) + 5n
f(n) =5n€ 0(n°1) T(n) = 0(n%)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘S)




Master Theorem Example 2 (Visually)

T(n) = 4T(n/2) + 5n

()

n o1 5n
o ]

> n
s, 0

2 n

: : : : . |

1/l a 15151515151515 29821 . 5n D




Master Theorem Example 2 (Visually)

T(n) =4T(n/2) + 5n

O
. . . . 5n
Cost is increasing with the recursion depth
(due to large number of subproblems) 4 - D
— 0 n
Most of the work happening in the leaves
o,
2 n



Master Theorem Example 3

T(n) =3T(n/2) + 8n [Karatsubal]

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 3

T(n)=3T(n/2)+ 8n [Karatsubal]

Step 1: Compute § = log, a = log- 3
Step 2: Compare n° and f(n)

f(n) = 8n € 0(n'°8237¢) for constant € > log, 3 —1 > 0
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 3

§ = log, 3 T(n)=3T(n/2)+ 8n [Karatsubal]
f(n) = 5n € 0(n°¢)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))



Master Theorem Example 3

§ = log, 3 T(n)=3T(n/2)+ 8n [Karatsubal]
f(n) =5n € 0(n°~*) T(n) = ©(n'°82 %)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘S)



Master Theorem Example 4

T(n) =2T(n/2) + 15n3

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 4

T(n) =2T(n/2) + 15n°

Step 1: Compute o =log, a =log, 2 =1

Step 2: Compare n° and f(n)
f(n) = 15n3 € Q(n'*?) = Q(n°*?)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a



Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))



Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

- Requirement on f Implication

f(n) € Q(n5+8) for some constant e > 0
AND

Case 3
af (g) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))



Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

Important: For Case 3, need to additionally check that
2f(n/2) < cf(n) for constant ¢ < 1 and sufficiently large n

2f(n/2) =30(n/2)° = ?nfﬂ < %(151’13)



Master Theorem Example 4

5=1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?) T(n) = 0(n>)

- Requirement on f Implication

f(n) € Q(n5+8) for some constant e > 0
AND

Case 3
af (g) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))



Master Theorem Example 3 (Visually)

T(n) =2T(n/2) + 15n3

M\ 15 (g) 5 Z) Z ’ 15n3 > 10g2 n




Master Theorem Example 3 (Visually)

T(n) =2T(n/2) + 15n3

Cost is decreasing with the recursion depth (5,3
(due to high non-recursive cost)

-
-
. 15n3
Most of the work happening at the top i D

15n3 > logz n
16

15log, n D




