CS 3100

Data Structures and Algorithms 2 Lecture 9: D\&C, Master Theorem

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Section 4.5

Announcements

- Upcoming dates
- PS2 due September 29 (Friday) at 11:59pm
- PA2 due October 8 (Sunday) at 11:59pm
- Quiz 1 and 2, October 5 (in-class)
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide:

- Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)

Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: $D(n)$ time
Conquer: Recurse on smaller problems of size s_{1}, \ldots, s_{k}
Combine: $C(n)$ time
Recurrence:

- $T(n)=D(n)+\sum_{i \in[k]} T\left(s_{i}\right)+C(n)$

Recurrence Solving Techniques

Tree

get a picture of recursion
? Guess/Check
guess and use induction to prove

"Cookbook"
 MAGIC!

Substitution

substitute in to simplify

Induction (Review)

Goal:

Base case(s):

Hypothesis:

Inductive step:
$\forall k \in \mathbb{N}, P(k)$ holds
$P(1)$ holds
$\forall x \leq x_{0}, P(x)$ holds

$$
P(1), \ldots, P\left(x_{0}\right) \Rightarrow P\left(x_{0}+1\right)
$$

Guess and Check Blueprint

Show: $T(n)=O(g(n))$
Consider: $g_{*}(n)=c \cdot g(n)$ for some constant c
Goal: show $\exists n_{0}$ such that $\forall n>n_{0}, T(n) \leq g_{*}(n)$

- (definition of big-O)

Technique: Induction

- Base cases:
- Show $T(1) \leq g_{*}(1)$ (sometimes, may need to consider additional base cases)
- Hypothesis:
- $\forall n \leq x_{0}, T(n) \leq g_{*}(n)$
- Inductive step:
- Show that $T\left(x_{0}+1\right) \leq g_{*}\left(x_{0}+1\right)$

Need to ensure that in inductive
step, can either appeal to a base case or to the inductive hypothesis

Karatsuba Analysis using Guess and Check

$$
T(n)=3 T(n / 2)+8 n
$$

Goal:

$$
T(n) \leq 3000 n^{1.6}=O\left(n^{1.6}\right)
$$

Base case:
$T(1)=8 \leq 3000$

Hypothesis:

Inductive step:

$$
\begin{aligned}
& \forall n \leq x_{0}, \quad T(n) \leq 3000 n^{1.6} \\
& \text { Show } T\left(x_{0}+1\right) \leq 3000\left(x_{0}+1\right)^{1.6}
\end{aligned}
$$

Karatsuba Guess and Check (Loose)

$$
T(n)=3 T(n / 2)+8 n
$$

Hypothesis: $\forall n \leq x_{0}: T(n) \leq 3000 n^{1.6}$
Show: $T\left(x_{0}+1\right) \leq 3000\left(x_{0}+1\right)^{1.6}$

$$
\begin{aligned}
T\left(x_{0}+1\right) & =3 T\left(\frac{x_{0}+1}{2}\right)+8\left(x_{0}+1\right) & & \text { Recurrence definition } \\
& \leq 3\left(3000\left(\frac{x_{0}+1}{2}\right)^{1.6}\right)+8\left(x_{0}+1\right) & & \text { Inductive hypothesis }
\end{aligned}
$$

Karatsuba Guess and Check (Loose)

$$
\begin{array}{rlrl}
T\left(x_{0}+1\right) & =3 T\left(\frac{x_{0}+1}{2}\right)+8\left(x_{0}+1\right) & & \text { Recurrence definition } \\
& \leq 3\left(3000\left(\frac{x_{0}+1}{2}\right)^{1.6}\right)+8\left(x_{0}+1\right) & & \text { Inductive hypothesis } \\
& \leq 3\left(3000\left(\frac{x_{0}+1}{2}\right)^{1.6}\right)+8\left(x_{0}+1\right)^{1.6} & & \forall x \geq 0: x^{1.6} \geq x \\
& =\left(\frac{9000}{\left.2^{1.6}+8\right)\left(x_{0}+1\right)^{1.6}}\right. & & \text { Distributive property } \\
& \leq 3000\left(x_{0}+1\right)^{1.6} & \frac{9000}{2^{1.6}}+8 \leq 3000
\end{array}
$$

Master Theorem for Recurrences

Jon Bentley

Dorothea Blostein (née Haken)

James B. Saxe

Observation

Divide: $D(n)$ time
Conquer: Recurse on smaller problems of size s_{1}, \ldots, s_{k}
Combine: $C(n)$ time

Recurrence:

- $T(n)=D(n)+\sum_{i \in[k]} T\left(s_{i}\right)+C(n)$

Many divide and conquer algorithms have recurrences are of form:

$$
\text { - } T(n)=a \cdot T(n / b)+f(n)
$$

Mergesort: $T(n)=2 T(n / 2)+n$
Divide and Conquer Multiplication: $T(n)=4 T(n / 2)+5 n$
Karatsuba Multiplication: $T(n)=3 T(n / 2)+8 n$

General Recurrence

$$
T(n)=a T(n / b)+f(n)
$$

Number of
Cost of subproblems subproblem

1	$f(n)$
a	$f(n / b)$
a^{2}	$f\left(n / b^{2}\right)$
a^{k}	$f\left(n / b^{k}\right)$

General Recurrence

3. Use asymptotic notation to simplify

$$
T(n)=a T(n / b)+f(n)
$$

Number of
Cost of subproblems

1 subproblem $f(n)$
How many levels?
Problem size at $k^{\text {th }}$ level: $\frac{n}{b^{k}}$ a $f(n / b)$

Base case: $n=1$
At level k, it should be the case that $\frac{n}{b^{k}}=1$

$$
n=b^{k} \Rightarrow k=\log _{b} n
$$

$$
a^{2} \quad f\left(n / b^{2}\right)
$$

General Recurrence

3. Use asymptotic notation to simplify

$$
T(n)=a T(n / b)+f(n)
$$

Number of subproblems

1 a

Cost of subproblem $f(n)$

$$
k=\log _{b} n
$$

What is the cost?
Cost at level $i: \quad a^{i} \cdot f\left(\frac{n}{b^{i}}\right)$

Total cost: $T(n)=\sum_{i=0}^{\log _{b} n} a^{i} \cdot f\left(\frac{n}{b^{i}}\right)$

$$
a^{2} \quad f\left(n / b^{2}\right)
$$

a^{k}
$f\left(n / b^{k}\right)$

Three Cases

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{k} f\left(\frac{n}{b^{k}}\right)
$$

$$
k=\log _{b} n
$$

Case 1:

Most work happens at the leaves

Case 2:
Work happens consistently throughout

Case 3:
Most work happens at top of tree

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

$$
\delta=\log _{b} a
$$

Requirement on f
 Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

$$
\delta=\log _{b} a
$$

Requirement on f

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$
Case 2 $f(n) \in \Theta\left(n^{\delta}\right)$ $T(n) \in \Theta\left(n^{\delta} \log n\right)$

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

$$
\delta=\log _{b} a
$$

Requirement on f

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$
Case 2

$$
f(n) \in \Theta\left(n^{\delta}\right)
$$

$$
T(n) \in \Theta\left(n^{\delta} \log n\right)
$$

$$
f(n) \in \Omega\left(n^{\delta+\varepsilon}\right) \text { for some constant } \varepsilon>0
$$ AND

Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

$$
T(n) \in \Theta(f(n))
$$

Master Theorem Example 1

$$
T(n)=2 T(n / 2)+n
$$

[Merge Sort]

$$
\delta=\log _{b} a
$$

Master Theorem Example 1

$$
T(n)=2 T(n / 2)+n
$$

[Merge Sort]

Step 1: Compute $\delta=\log _{b} a=\log _{2} 2=1$
Step 2: Compare n^{δ} and $f(n)$

$$
f(n)=n \in \Theta\left(n^{\delta}\right)
$$

Step 3: Check table

$$
T(n)=a T(n / b)+f(n) \quad \delta=\log _{b} a
$$

Master Theorem Example 1

$$
\begin{aligned}
& \delta=1 \quad T(n)=2 T(n / 2)+n \\
& f(n)=n \in \Theta\left(n^{\delta}\right)
\end{aligned}
$$

[Merge Sort]

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0$

$$
T(n) \in \Theta\left(n^{\delta}\right)
$$

Case 2

$$
f(n) \in \Theta\left(n^{\delta}\right)
$$

$$
T(n) \in \Theta\left(n^{\delta} \log n\right)
$$

$$
f(n) \in \Omega\left(n^{\delta+\varepsilon}\right) \text { for some constant } \varepsilon>0
$$ AND

Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

Master Theorem Example 1

$$
\begin{array}{lcc}
\delta=1 & T(n)=2 T(n / 2)+n & \text { [Merge Sort } \\
f(n)=n \in \Theta\left(n^{\delta}\right) & T(n)=\Theta(n \log n) \\
\text { Requirement on } f & \text { Implication }
\end{array}
$$

Case 2
$f(n) \in \Theta\left(n^{\delta}\right)$
$T(n) \in \Theta\left(n^{\delta} \log n\right)$

Master Theorem Example 1 (Visually)

Cost is consistent across levels \Rightarrow
Cost increases by log factor (\approx number of levels)

Master Theorem Example 2

$$
T(n)=4 T(n / 2)+5 n
$$

Master Theorem Example 2

$$
T(n)=4 T(n / 2)+5 n
$$

Step 1: Compute $\delta=\log _{b} a=\log _{2} 4=2$
Step 2: Compare n^{δ} and $f(n)$

$$
f(n)=5 n \in O\left(n^{2-1}\right)=O\left(n^{\delta-1}\right)
$$

Step 3: Check table

$$
T(n)=a T(n / b)+f(n) \quad \delta=\log _{b} a
$$

Master Theorem Example 2

$$
\begin{aligned}
& \delta=2 \quad T(n)=4 T(n / 2)+5 n \\
& f(n)=5 n \in O\left(n^{\delta-1}\right)
\end{aligned}
$$

Implication
Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0$

$$
T(n) \in \Theta\left(n^{\delta}\right)
$$

Case 2

$$
f(n) \in \Theta\left(n^{\delta}\right)
$$

$$
T(n) \in \Theta\left(n^{\delta} \log n\right)
$$

$$
f(n) \in \Omega\left(n^{\delta+\varepsilon}\right) \text { for some constant } \varepsilon>0
$$ AND

Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

Master Theorem Example 2

$$
\begin{array}{ll}
\delta=2 \quad T(n)=4 T(n / 2)+5 n & \\
f(n)=5 n \in O\left(n^{\delta-1}\right) & T(n)=\Theta\left(n^{2}\right)
\end{array}
$$

	Requirement on f	Implication
Case 1	$f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0$	$T(n) \in \Theta\left(n^{\delta}\right)$

Master Theorem Example 2 (Visually)

$$
T(n)=4 T(n / 2)+5 n
$$

Master Theorem Example 2 (Visually)

$$
T(n)=4 T(n / 2)+5 n
$$

Cost is increasing with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves

$$
\begin{gathered}
5 n \\
\frac{4}{2} \cdot 5 n \\
\frac{16}{4} \cdot 5 n \\
\vdots \\
2^{\log _{2} n} \cdot 5 n
\end{gathered}
$$

Master Theorem Example 3

$$
T(n)=3 T(n / 2)+8 n
$$

[Karatsuba]

$$
T(n)=a T(n / b)+f(n) \quad \delta=\log _{b} a
$$

Master Theorem Example 3

$$
T(n)=3 T(n / 2)+8 n
$$

[Karatsuba]

Step 1: Compute $\delta=\log _{b} a=\log _{2} 3$
Step 2: Compare n^{δ} and $f(n)$

$$
f(n)=8 n \in O\left(n^{\log _{2} 3-\varepsilon}\right) \text { for constant } \varepsilon>\log _{2} 3-1>0
$$

Step 3: Check table

$$
T(n)=a T(n / b)+f(n) \quad \delta=\log _{b} a
$$

Master Theorem Example 3

$$
\begin{aligned}
& \delta=\log _{2} 3 \quad T(n)=3 T(n / 2)+8 n \\
& f(n)=5 n \in O\left(n^{\delta-\varepsilon}\right)
\end{aligned}
$$

[Karatsuba]

Requirement on f

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0$

$$
T(n) \in \Theta\left(n^{\delta}\right)
$$

Case 2

$$
f(n) \in \Theta\left(n^{\delta}\right)
$$

$$
T(n) \in \Theta\left(n^{\delta} \log n\right)
$$

$$
f(n) \in \Omega\left(n^{\delta+\varepsilon}\right) \text { for some constant } \varepsilon>0
$$ AND

Case 3

$$
\begin{gathered}
\text { af }\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

Master Theorem Example 3

$$
\begin{array}{lrr}
\delta=\log _{2} 3 \quad T(n)=3 T(n / 2)+8 n & \quad \text { [Karatsuba] } \\
f(n)=5 n \in O\left(n^{\delta-\varepsilon}\right) & T(n)=\Theta\left(n^{\log _{2} 3}\right)
\end{array}
$$

Requirement on f

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$

Master Theorem Example 4

$$
T(n)=2 T(n / 2)+15 n^{3}
$$

Master Theorem Example 4

$$
T(n)=2 T(n / 2)+15 n^{3}
$$

Step 1: Compute $\delta=\log _{b} a=\log _{2} 2=1$
Step 2: Compare n^{δ} and $f(n)$

$$
f(n)=15 n^{3} \in \Omega\left(n^{1+2}\right)=\Omega\left(n^{\delta+2}\right)
$$

Step 3: Check table

$$
T(n)=a T(n / b)+f(n) \quad \delta=\log _{b} a
$$

Master Theorem Example 4

$$
\begin{aligned}
& \delta=1 \quad T(n)=2 T(n / 2)+15 n^{3} \\
& f(n)=15 n^{3} \in \Omega\left(n^{\delta+2}\right)
\end{aligned}
$$

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0$

$$
T(n) \in \Theta\left(n^{\delta}\right)
$$

Case 2

$$
f(n) \in \Theta\left(n^{\delta}\right)
$$

$$
T(n) \in \Theta\left(n^{\delta} \log n\right)
$$

$$
f(n) \in \Omega\left(n^{\delta+\varepsilon}\right) \text { for some constant } \varepsilon>0
$$ AND

Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

Master Theorem Example 4

$$
\begin{aligned}
& \delta=1 \quad T(n)=2 T(n / 2)+15 n^{3} \\
& f(n)=15 n^{3} \in \Omega\left(n^{\delta+2}\right)
\end{aligned}
$$

$f(n) \in \Omega\left(n^{\delta+\varepsilon}\right)$ for some constant $\varepsilon>0$ AND
Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

Master Theorem Example 4

$$
\begin{aligned}
& \delta=1 \quad T(n)=2 T(n / 2)+15 n^{3} \\
& f(n)=15 n^{3} \in \Omega\left(n^{\delta+2}\right)
\end{aligned}
$$

Important: For Case 3, need to additionally check that $2 f(n / 2) \leq c f(n)$ for constant $c<1$ and sufficiently large n

$$
2 f(n / 2)=30(n / 2)^{3}=\frac{30}{8} n^{3} \leq \frac{1}{4}\left(15 n^{3}\right)
$$

Master Theorem Example 4

$$
\begin{array}{ll}
\delta=1 & T(n)=2 T(n / 2)+15 n^{3} \\
f(n)=15 n^{3} \in \Omega\left(n^{\delta+2}\right) & T(n)=\Theta\left(n^{3}\right)
\end{array}
$$

$f(n) \in \Omega\left(n^{\delta+\varepsilon}\right)$ for some constant $\varepsilon>0$ AND
Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

Master Theorem Example 3 (Visually)

$$
T(n)=2 T(n / 2)+15 n^{3}
$$

Master Theorem Example 3 (Visually)

$$
T(n)=2 T(n / 2)+15 n^{3}
$$

Cost is decreasing with the recursion depth $15 n^{3}$ (due to high non-recursive cost)

Most of the work happening at the top

