CS 3100 Data Structures and Algorithms 2 Lecture 9: D&C, Master Theorem

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS 4th edition:

• Section 4.5

Announcements

- Upcoming dates
 - PS2 due September 29 (Friday) at 11:59pm
 - PA2 due October 8 (Sunday) at 11:59pm
 - Quiz 1 and 2, October 5 (in-class)
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

 Merge solutions to subproblems to obtain solution for original problem

When is this an effective strategy?

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

•
$$T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$$

Recurrence Solving Techniques

"Cookbook" MAGIC!

Substitution

substitute in to simplify

Induction (Review)

Goal:	$\forall k \in \mathbb{N}, P(k) \text{ holds}$	
Base case(s):	P(1) holds	Technically, called strong induction
Hypothesis:	$\forall x \leq x_0, P(x) $ ho	lds
Inductive step:	$P(1), \dots, P(x_0) \Rightarrow$	$P(x_0 + 1)$

Guess and Check Blueprint

Show: T(n) = O(g(n))

Consider: $g_*(n) = c \cdot g(n)$ for some constant c

Goal: show $\exists n_0$ such that $\forall n > n_0$, $T(n) \leq g_*(n)$

• (definition of big-O)

Technique: Induction

- Base cases:
 - Show $T(1) \le g_*(1)$ (sometimes, may need to consider <u>additional</u> base cases)
- Hypothesis:
 - $\forall n \leq x_0, T(n) \leq g_*(n)$
- Inductive step:
 - Show that $T(x_0 + 1) \le g_*(x_0 + 1)$

Need to ensure that in inductive step, can either appeal to a <u>base</u> <u>case</u> or to the <u>inductive hypothesis</u>

Karatsuba Analysis using Guess and Check

$$T(n) = 3T(n/2) + 8n$$

Base case:

$$T(1) = 8 \le 3000$$

Hypothesis:

 $\forall n \le x_0, \ T(n) \le 3000 n^{1.6}$

Inductive step:

Show $T(x_0 + 1) \le 3000(x_0 + 1)^{1.6}$

Karatsuba Guess and Check (Loose)

$$T(n) = 3T(n/2) + 8n$$

Hypothesis: $\forall n \le x_0$: $T(n) \le 3000n^{1.6}$
Show: $T(x_0 + 1) \le 3000(x_0 + 1)^{1.6}$

$$T(x_0 + 1) = 3T\left(\frac{x_0 + 1}{2}\right) + 8(x_0 + 1)$$
 Recurrence definition

$$\leq 3\left(3000\left(\frac{x_0+1}{2}\right)^{1.6}\right) + 8(x_0+1) \qquad \text{Inductive hypothesis}$$

Karatsuba Guess and Check (Loose)

$$T(x_0+1) = 3T\left(\frac{x_0+1}{2}\right) + 8(x_0+1)$$

Recurrence definition

$$\leq 3\left(3000\left(\frac{x_0+1}{2}\right)^{1.6}\right) + 8(x_0+1)$$

Inductive hypothesis

$$\leq 3\left(3000\left(\frac{x_0+1}{2}\right)^{1.6}\right) + 8(x_0+1)^{1.6} \qquad \forall x \ge 0$$

$$\forall x \ge 0 \colon x^{1.6} \ge x$$

$$\frac{9000}{2^{1.6}} + 8 \le 3000$$

 $= \left(\frac{9000}{2^{1.6}} + 8\right) (x_0 + 1)^{1.6}$

 $\leq 3000(x_0+1)^{1.6}$ Show: $T(x_0+1) \leq 3000(x_0+1)^{1.6}$

Master Theorem for Recurrences

Jon Bentley

Dorothea Blostein (née Haken)

James B. Saxe

Observation

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

• $T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$

Many divide and conquer algorithms have recurrences are of form:

• $T(n) = a \cdot T(n/b) + f(n)$ and b are constants

Mergesort: T(n) = 2T(n/2) + n

Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n

Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

General Recurrence

k levels

General Recurrence

3. Use asymptotic notation to simplify T(n) = aT(n/b) + f(n)	Number of subproblems	Cost of subproblem
How many loyals?	1	f(n)
	a	f(n/h)
Problem size at k^{cm} level: $\overline{b^k}$	u	J (11/0)
Base case: $n = 1$		
At level k, it should be the case that $\frac{n}{b^k} = 1$	a ²	$f(n/b^2)$
$n = b^k \Rightarrow k = \log_b n$	a^k	$f(n/b^k)$

General Recurrence

3. Use asymptotic notation to simplify T(n) = aT(n/b) + f(n)

$$k = \log_b n$$

What is the cost?

Cost at level *i*: $a^i \cdot f\left(\frac{n}{b^i}\right)$

Total cost:
$$T(n) = \sum_{i=0}^{\log_b n} a^i \cdot f\left(\frac{n}{b^i}\right)$$

Three Cases

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + a^{3}f\left(\frac{n}{b^{3}}\right) + \dots + a^{k}f\left(\frac{n}{b^{k}}\right)$$

$$k = \log_{b} n$$
Case 1:
Most work happens
at the leaves
$$Case 2:$$
Work happens
consistently throughout
$$Case 3:$$
Most work happens
at top of tree
$$I$$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta - \varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$T(n) = 2T(n/2) + n$$
 [Merge Sort]

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$T(n) = 2T(n/2) + n$$
 [Merge Sort]

Step 1: Compute $\delta = \log_b a = \log_2 2 = 1$

Step 2: Compare n^{δ} and f(n) $f(n) = n \in \Theta(n^{\delta})$

Step 3: Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = 1$$
 $T(n) = 2T(n/2) + n$ [Merge Sort]

 $f(n) = n \in \Theta(n^{\delta})$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = 1$$

$$T(n) = 2T(n/2) + n$$
[Merge Sort

$$f(n) = n \in \Theta(n^{\delta})$$

$$T(n) = \Theta(n \log n)$$

$$Case 2$$

$$f(n) \in \Theta(n^{\delta})$$

$$T(n) \in \Theta(n^{\delta} \log n)$$

$$T(n) \in \Theta(n^{\delta} \log n)$$

Master Theorem Example 1 (Visually)

Cost is <u>consistent</u> across levels \rightarrow Cost increases by log factor (\approx number of levels)

$$T(n) = 4T(n/2) + 5n$$

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$T(n) = 4T(n/2) + 5n$$

- **Step 1:** Compute $\delta = \log_b a = \log_2 4 = 2$
- Step 2: Compare n^{δ} and f(n) $f(n) = 5n \in O(n^{2-1}) = O(n^{\delta-1})$
- Step 3: Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = 2 \qquad T(n) = 4T(n/2) + 5n$$
$$f(n) = 5n \in O(n^{\delta - 1})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = 2 \qquad T(n) = 4T(n/2) + 5n$$

$$f(n) = 5n \in O(n^{\delta - 1}) \qquad T(n) = \Theta(n^2)$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$

Master Theorem Example 2 (Visually)

T(n) = 4T(n/2) + 5n

Master Theorem Example 2 (Visually)

$$T(n) = 4T(n/2) + 5n$$

Cost is <u>increasing</u> with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves

$$T(n) = 3T(n/2) + 8n$$
 [Karatsuba]

 $T(n) = aT(n/b) + f(n) \qquad \qquad \delta = \log_b a$

$$T(n) = \frac{3T(n/2) + 8n}{[Karatsuba]}$$

Step 1: Compute $\delta = \log_b a = \log_2 3$

Step 2: Compare n^{δ} and f(n)

 $f(n) = 8n \in O(n^{\log_2 3-\varepsilon})$ for constant $\varepsilon > \log_2 3 - 1 > 0$ **Step 3:** Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = \log_2 3 \qquad T(n) = 3T(n/2) + 8n \qquad [Karatsuba]$$
$$f(n) = 5n \in O(n^{\delta - \varepsilon})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = \log_2 3 \qquad T(n) = 3T(n/2) + 8n \qquad [Karatsuba]$$
$$f(n) = 5n \in O(n^{\delta - \varepsilon}) \qquad T(n) = \Theta(n^{\log_2 3})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$

$$T(n) = 2T(n/2) + 15n^3$$

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$T(n) = 2T(n/2) + 15n^3$$

- **Step 1:** Compute $\delta = \log_b a = \log_2 2 = 1$
- Step 2: Compare n^{δ} and f(n) $f(n) = 15n^3 \in \Omega(n^{1+2}) = \Omega(n^{\delta+2})$
- Step 3: Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = 1$$
 $T(n) = 2T(n/2) + 15n^3$

$$f(n) = 15n^3 \in \Omega(n^{\delta+2})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = 1 \qquad T(n) = 2T(n/2) + 15n^3$$

$$f(n) = 15n^3 \in \Omega(n^{\delta+2})$$
Requirement on f
Implication
Case 1 $f(n) \in O(n^{\delta-\epsilon})$ for some constant $\epsilon > 0$

Case 3 $f(n) \in \Omega(n^{\delta+\varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n

$$\delta = 1 \qquad T(n) = 2T(n/2) + 15n^3$$
$$f(n) = 15n^3 \in \Omega(n^{\delta+2})$$

Important: For Case 3, need to additionally check that $2f(n/2) \le cf(n)$ for constant c < 1 and sufficiently large n

$$2f(n/2) = 30(n/2)^3 = \frac{30}{8}n^3 \le \frac{1}{4}(15n^3)$$

$$\delta = 1 \qquad T(n) = 2T(n/2) + 15n^3$$

$$f(n) = 15n^3 \in \Omega(n^{\delta+2}) \qquad T(n) = \Theta(n^3)$$

$$\boxed{\text{Requirement on } f} \qquad \boxed{\text{Implication}}$$

$$\boxed{\text{Case 1}} \quad f(n) \in O(n^6) \text{ for some constant } \varepsilon > 0 \qquad T(n) \in O(n^6)$$

$$\boxed{\text{Case 3}} \quad f(n) \in \Omega(n^{\delta+\varepsilon}) \text{ for some constant } \varepsilon > 0 \qquad T(n) \in \Theta(f(n))$$

$$af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$$

$$sufficiently \text{ large } n$$

Master Theorem Example 3 (Visually)

 $T(n) = 2T(n/2) + 15n^3$

Master Theorem Example 3 (Visually)

$$T(n) = 2T(n/2) + 15n^3$$

Cost is <u>decreasing</u> with the recursion depth $15n^{3}$ (due to high *non-recursive* cost)

Most of the work happening at the top

 $15n^{3}$

4

 $15n^{3}$

16