
CS 3100
Data Structures and Algorithms 2

Lecture 9: D&C, Master Theorem

Co-instructors:  Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Section 4.5



Announcements

• Upcoming dates

• PS2 due September 29 (Friday) at 11:59pm
• PA2 due October 8 (Sunday) at 11:59pm
• Quiz 1 and 2, October 5 (in-class)

• Course email (comes to both professors and head TAs):

  cs3100@cshelpdesk.atlassian.net
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Divide and Conquer

Divide: 
• Break the problem into multiple 

subproblems, each smaller instances of the 
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively
• If the subproblems are “small”:

• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain 

solution for original problem

When is this an 

effective strategy?

[CLRS Chapter 4]



Analyzing Divide and Conquer

1. Break into smaller subproblems

2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: !(#) time

Conquer: Recurse on smaller problems of size %!, … , %"
Combine: ((#) time

Recurrence: 
• ! " = $ " + ∑!∈[$]!((!) + *(")



Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify



Induction (Review)
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Goal:   ∀" ∈ ℕ, &(") holds

Base case(s):  & 1  holds  

Hypothesis:  ∀* ≤ *!, & *  holds

Inductive step:  & 1 ,… , & *! ⇒ & *! + 1

Technically, called 

strong induction



Guess and Check Blueprint

Show: ) # = +(, # )

Consider: ,∗ # = - ⋅ ,(#) for some constant -

Goal: show ∃#$	such that ∀# > #$, ) # ≤ ,∗(#)
• (definition of big-O)

Technique: Induction

• Base cases: 
• Show % 1 ≤ (∗ 1  (sometimes, may need to consider additional base cases)

• Hypothesis: 
• ∀* ≤ +", % * ≤ (∗(*)

• Inductive step:
• Show that % +" + 1 ≤ (∗ +" + 1
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Need to ensure that in inductive 
step, can either appeal to a base 

case or to the inductive hypothesis



Karatsuba Analysis using Guess and Check
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) # = 3) ⁄# 2 + 8#

Goal:   ! " ≤ 3000	"&.( = /("&.()

Base case:  ! 1 = 8 ≤ 3000 

Hypothesis:  ∀" ≤ 3), 	! " ≤ 3000"&.(  

Inductive step:  Show ! 3) + 1 ≤ 3000 3) + 1 &.(



Karatsuba Guess and Check (Loose)

9

Show: ) 9$ + 1 ≤ 3000 9$ + 1
!.1

) 9$ + 1

Hypothesis: ∀# ≤ 9$: 	) # ≤ 3000#!.1

= 3)
9$ + 1

2
+ 8 9$ + 1

≤ 3 3000
9$ + 1

2

!.1

+ 8 9$ + 1

Recurrence definition

Inductive hypothesis

) # = 3) ⁄# 2 + 8#



Karatsuba Guess and Check (Loose)

10Show: ! 3) + 1 ≤ 3000 3) + 1 &.(

! 3) + 1 = 3! 3) + 1
2 + 8 3) + 1

≤ 3 3000 3) + 1
2

&.(
+ 8 3) + 1

Recurrence definition

Inductive hypothesis

≤ 3 3000 3) + 1
2

&.(
+ 8 3) + 1 &.( ∀3 ≥ 0: 3&.( ≥ 3

= 9000
2&.( + 8 3) + 1 &.( Distributive property

≤ 3000 3) + 1 &.( 9000
2&.( + 8 ≤ 3000



Master Theorem for Recurrences

Jon Bentley Dorothea Blostein 

(née Haken)
James B. Saxe



Observation

Divide: $(") time
Conquer: Recurse on smaller problems of size (&, … , ($
Combine: *(") time
Recurrence: 

• % * = 3 * + ∑#∈[&]%(5#) + 6(*)

Many divide and conquer algorithms have recurrences are of form:
• %(*) = 7 ⋅ %(*/:) + ;(*)

Mergesort: % * = 2% ⁄* 2 + *

Divide and Conquer Multiplication: % * = 4% ⁄* 2 + 5*

Karatsuba Multiplication: % * = 3% ⁄* 2 + 8*
12

= and > are constants



General Recurrence
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) # = =) ⁄# > + ?(#)

# *(,)

* ,
. * ,

.* ,
.

#

>

#

>

#

>

* ,
.! * ,

.! * ,
.! * ,

.!…#

>B
#

>B
#

>B
#

>B

*(1) *(1) *(1) *(1) *(1) *(1) *(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

=

=B

="

Cost of 
subproblem

?(#)

? ⁄# >

? ⁄# >B

Number of 
subproblems

C levels

? ⁄# >"



General Recurrence
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) # = =) #/> + ?(#)
3. Use asymptotic notation to simplify

How many levels?
Problem size at 901 level:

Base case:

At level 9, it should be the case that 23! = 1

! = #! ⇒ % = log" !

"
:$

" = 1

1

=

=B

="

Cost of 
subproblem

?(#)

? ⁄# >

? ⁄# >B

? ⁄# >"

Number of 
subproblems



General Recurrence
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) # = =) #/> + ?(#)
3. Use asymptotic notation to simplify

1

=

=B

="

Cost of 
subproblem

?(#)

? ⁄# >

? ⁄# >B

? ⁄# >"

Number of 
subproblems

What is the cost?

Cost at level A: =D ⋅ ?
#

>D	

Total cost: ) # = B
DF$

GHI! J

=D ⋅ ?
#

>D

% = log" !



Three Cases
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! " = ; " + <; "
: + <4; "

:4 + <5; "
:5 +⋯+ <$; "

:$
Case 1:

Most work happens 
at the leaves

Case 2:
Work happens  

consistently throughout

Case 3:
Most work happens 

at top of tree

C = logK #



Master Theorem

) # = =) ⁄# > + ?(#)

) = log" * 
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L



Master Theorem

) # = =) ⁄# > + ?(#)

) = log" * 
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #



Master Theorem

) # = =) ⁄# > + ?(#)

) = log" * 
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 1

/ 0 = 2/ ⁄0 2 + 0

26+ ! = *+ ⁄! # + .(!) 4 = log" 8 

[Merge Sort]



Master Theorem Example 1

/ 0 = 2/ ⁄0 2 + 0

27+ ! = *+ ⁄! # + .(!) 4 = log" 8 

Step 1: Compute 4 = log" 8 = log# 2 = 1
Step 2: Compare 0$  and 9(0)

9 0 = 0 ∈ Θ 0$

Step 3: Check table

[Merge Sort]



Master Theorem Example 1

/ 0 = 2/ ⁄0 2 + 0
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9 0 = 0 ∈ Θ 0$
4 = 1 [Merge Sort]

Requirement on G Implication
Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 1

/ 0 = 2/ ⁄0 2 + 0
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9 0 = 0 ∈ Θ 0$ / 0 = Θ(0 log 0)
4 = 1 [Merge Sort]

Requirement on G Implication
Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 1 (Visually)

#

/ 0 = 2/ ⁄0 2	 + 0

⁄# 2 ⁄# 2

⁄# 4 ⁄# 4 ⁄# 4 ⁄# 4

… … … …

1 1 1 … 1 1 1

,

,/2 ,/2

,/4 ,/4 ,/4 ,/4

1 1 1 11 1

"

"

"

"

logB #
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Cost is consistent across levels ⇒
Cost increases by log factor (≈ number of levels)



Master Theorem Example 2

/ 0 = 4/ ⁄0 2 + 50

31+ ! = *+ ⁄! # + .(!) 4 = log" 8 



Master Theorem Example 2

/ 0 = 4/ ⁄0 2 + 50

32+ ! = *+ ⁄! # + .(!) 4 = log" 8 

Step 1: Compute 4 = log" 8 = log# 4 = 2
Step 2: Compare 0$  and 9(0)

9 0 = 50 ∈ > 0#%& = > 0$%&

Step 3: Check table



Master Theorem Example 2
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9 0 = 50 ∈ > 0$%&
/ 0 = 4/ ⁄0 2 + 504 = 2

Requirement on G Implication
Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 2
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9 0 = 50 ∈ > 0$%& / 0 = Θ(0#)
/ 0 = 4/ ⁄0 2 + 504 = 2

Requirement on G Implication
Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 2 (Visually)

# 5,

5,
2

5

5,
2

5,
2

#

2

#

2

#

2

#

2
5,
2

5,
4

5,
4

5,
4

5,
4

5,
4

5,
4

5,
4…#

4

#

4

#

4

#

4

#

4

#

4

#

4

#

4
5,
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … …
1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5#

4

2
⋅ 5#

16

4
⋅ 5#

2GHI" J ⋅ 5#

⋮

/ 0 = 4/ ⁄0 2 + 50



Master Theorem Example 2 (Visually)

5#

4

2
⋅ 5#

16

4
⋅ 5#

2GHI" J ⋅ 5#

⋮

/ 0 = 4/ ⁄0 2 + 50

Cost is increasing with the recursion depth 

(due to large number of subproblems)

Most of the work happening in the leaves



Master Theorem Example 3

/ 0 = 3/ ⁄0 2 + 80

37+ ! = *+ ⁄! # + .(!) 4 = log" 8 

[Karatsuba]



Master Theorem Example 3

/ 0 = 3/ ⁄0 2 + 80

38+ ! = *+ ⁄! # + .(!) 4 = log" 8 

[Karatsuba]

Step 1: Compute 4 = log" 8 = log# 3
Step 2: Compare 0$  and 9(0)
9 0 = 80 ∈ > 0'()! *%+  for constant A > log# 3 − 1 > 0

Step 3: Check table



Master Theorem Example 3

39

9 0 = 50 ∈ > 0$%+
4 = log# 3 / 0 = 3/ ⁄0 2 + 80 [Karatsuba]

Requirement on G Implication
Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 3
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9 0 = 50 ∈ > 0$%+
4 = log# 3 / 0 = 3/ ⁄0 2 + 80 [Karatsuba]

/ 0 = Θ(0'()! *)
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #



Master Theorem Example 4

/ 0 = 2/ ⁄0 2 + 150*

41+ ! = *+ ⁄! # + .(!) 4 = log" 8 



Master Theorem Example 4

/ 0 = 2/ ⁄0 2 + 150*

42+ ! = *+ ⁄! # + .(!) 4 = log" 8 

Step 1: Compute 4 = log" 8 = log# 2 = 1
Step 2: Compare 0$  and 9(0)

9 0 = 150* ∈ Ω 0&,# = Ω 0$,#

Step 3: Check table



Master Theorem Example 4
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9 0 = 150* ∈ Ω 0$,#
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #

4 = 1 / 0 = 2/ ⁄0 2 + 150*



Master Theorem Example 4
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9 0 = 150* ∈ Ω 0$,#
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #

4 = 1 / 0 = 2/ ⁄0 2 + 150*



Master Theorem Example 4
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9 0 = 150* ∈ Ω 0$,#
4 = 1

Important: For Case 3, need to additionally check that 
29 ⁄0 2 ≤ F9(0) for constant F < 1 and sufficiently large 0 

29 ⁄0 2 = 30 ⁄0 2 * = 30
8 0* ≤ 1

4 150*

/ 0 = 2/ ⁄0 2 + 150*



Master Theorem Example 4

46

9 0 = 150* ∈ Ω 0$,#
Requirement on G Implication

Case 1 ? # ∈ + #LMN  for some constant I > 0 ) # ∈ Θ #L

Case 2 ? # ∈ Θ #L ) # ∈ Θ #L log #

Case 3

? # ∈ Ω #LON  for some constant I > 0
 AND

=?
J

K
≤ -?(#) for constant - < 1 and 

sufficiently large #

) # ∈ Θ ? #

4 = 1
/ 0 = Θ(0*)

/ 0 = 2/ ⁄0 2 + 150*



Master Theorem Example 3 (Visually)

#

⁄# 2 ⁄# 2

⁄# 4 ⁄# 4 ⁄# 4 ⁄# 4

… … … …
1 1 1 … 1 1 1

15,"

15 ,
2

"
15 ,

2
"

15 ,
4

" 15 ,
4

"
15 ,

4
"

15 ,
4

"

15 15 15 1515 15

15"5

15"5
4

15"5
16

15 log4 "

logB #
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/ 0 = 2/ ⁄0 2 + 150*



Master Theorem Example 3 (Visually)

15"5

15"5
4

15"5
16

15 log4 "

logB #
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/ 0 = 2/ ⁄0 2 + 150*

Cost is decreasing with the recursion depth

(due to high non-recursive cost)

Most of the work happening at the top


