CS 3100 Data Structures and Algorithms 2 Lecture 8: Divide and Conquer

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS 4th edition:

• Section 4.1-4.4

Announcements

- Upcoming dates
 - PA1 due Sept 17 (Sunday) at 11:59pm
 - PS2 available
 - PA2 available
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide:

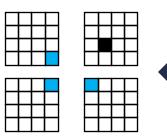
 Break the problem into multiple subproblems, each smaller instances of the original

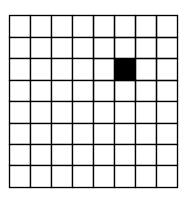
Conquer:

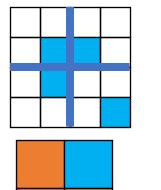
- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

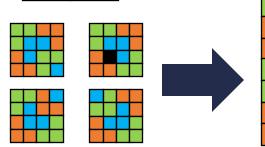
• Merge solutions to subproblems to obtain solution for original problem

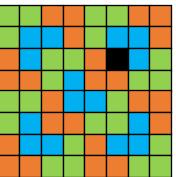






When is this an effective strategy?





Merge Sort

Divide:

• Break *n*-element list into two lists of n/2 elements

Conquer:

- If *n* > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

Combine:

• Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list

Inputs:

- 2 sorted lists (L_1, L_2)
- 1 output list (*L*_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \leq L_2[0]:

L_{out}.append(L_1.pop())

Else:

L_{out}.append(L_2.pop())

L_{out}.append(L_1)

L_{out}.append(L_2)
```

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

•
$$T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$$

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small problems, size $\frac{n}{2}$

Combine: *n* comparisons

Recurrence:

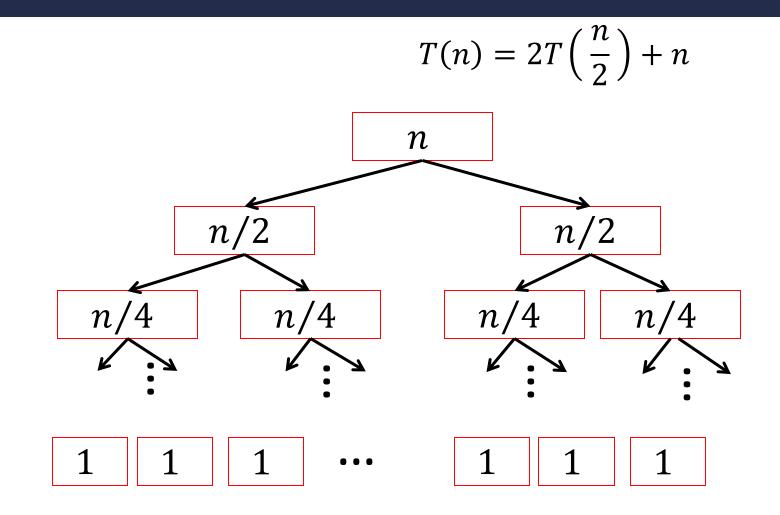
• T(n) = 2T(n/2) + n

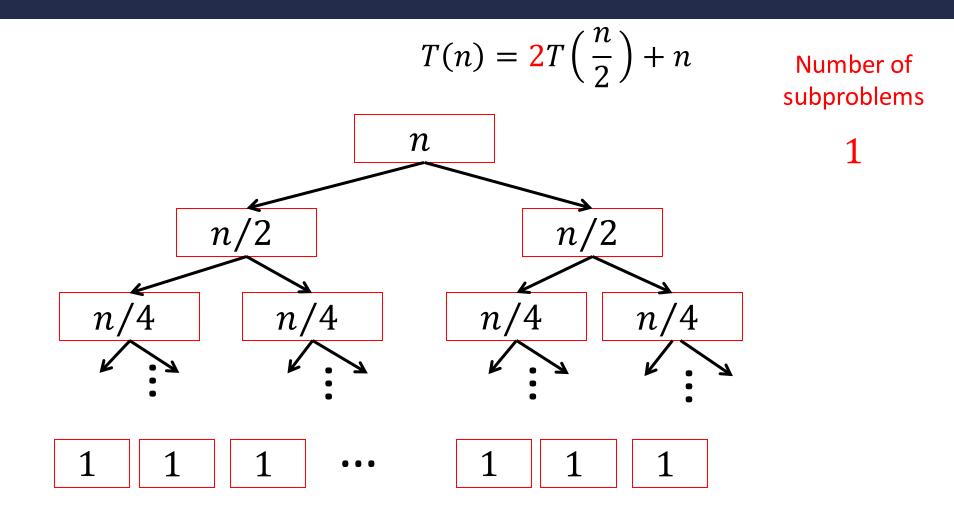
Recurrence Solving Techniques

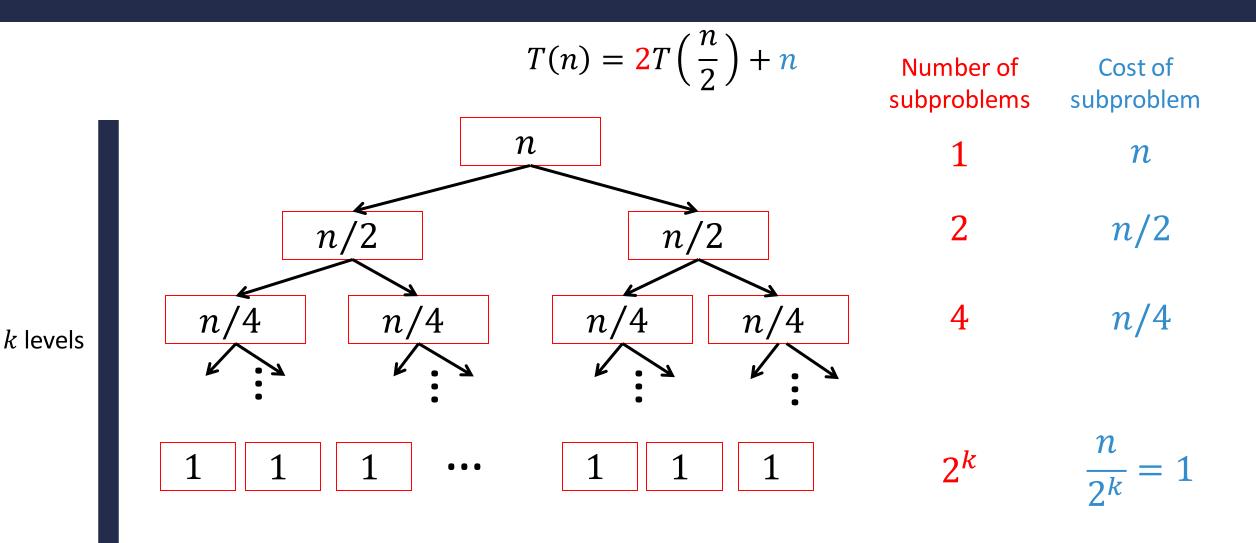
? Guess/Check

"Cookbook"

Substitution





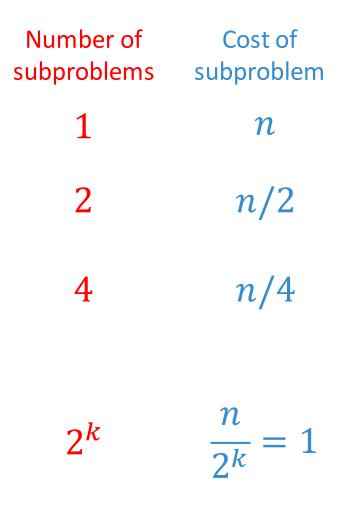


Use asymptotic notation to simplify
T(n) = 2T(n/2) + n
How many levels?
Problem size at k^{th} level: $\frac{n}{2^k}$

Base case: n = 1

At level k, it should be the case that $\frac{n}{2^k} = 1$

$$n = 2^k \Rightarrow k = \log_2 n$$



3. Use asymptotic notation to simplify T(n) = 2T(n/2) + n	Number of subproblems	Cost of subproblem
$k = \log_2 n$	1	n
108210	2	<i>n</i> /2
What is the cost?	4	
Cost at level <i>i</i> : $2^i \cdot \frac{n}{2^i} = n$	4	<i>n</i> /4
Total cost: $T(n) = \sum_{n=1}^{\log_2 n} n = n \sum_{n=1}^{\log_2 n} 1 = n \log_2 n$	2 ^{<i>k</i>}	$\frac{n}{2^k} = 1$
$\overline{i=0} \qquad \overline{i=0} = \Theta(n \log n)$	<i>n</i>)	

Recurrence Solving Techniques

"Cookbook" MAGIC!

Substitution

substitute in to simplify

Multiplication

Want to multiply large numbers together

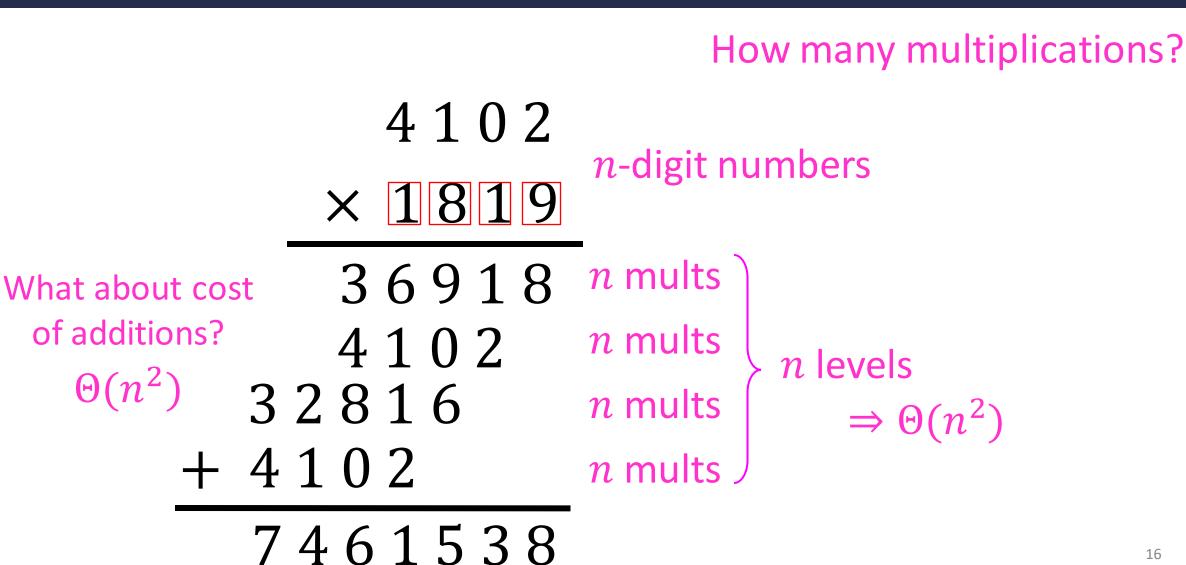
How do we measure input size?

What do we "count" for run time?

number of digits

number of <u>elementary</u> operations (single-digit multiplications)

"Schoolbook" Multiplication



"Schoolbook" Multiplication

Can we do		Но	ow many multiplications?)
better?	4102	a digit pu	umborg	
	× 1819	n-digit nu	umpers	
What about cost	36918	<i>n</i> mults		
of additions?	4102	n mults	> n levels	
$\Theta(n^2)$ 32	2816	<i>n</i> mults	$\Rightarrow \Theta(n^2)$	
+ 4 2	102	n mults)		
74	461538		17	

1. Break into smaller subproblems

$$a \quad b = 10^{\frac{n}{2}} a + b$$

$$\times c \quad d = 10^{\frac{n}{2}} c + d$$

$$= 10^{n} (a \times c) + 10^{\frac{n}{2}} (a \times d + b \times c) + (b \times d)$$

Divide:

• Break *n*-digit numbers into four numbers of *n*/2 digits each (call them *a*, *b*, *c*, *d*)

Conquer:

- If n > 1:
 - Recursively compute *ac*, *ad*, *bc*, *bd*
- If n = 1: (i.e. one digit each)
 - Compute *ac*, *ad*, *bc*, *bd* directly (base case)

Combine:

• $10^n(ac) + 10^{n/2}(ad + bc) + bd$

For simplicity, assume that $n = 2^k$ is a power of 2

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

T(n)

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right)$$

Need to compute 4 multiplications, each of size n/2

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

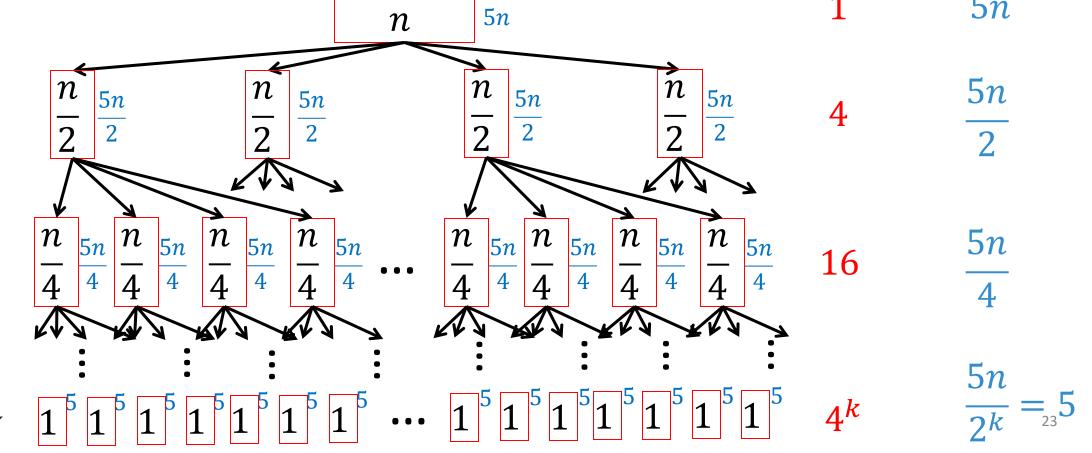
Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Need to compute 4 multiplications, each of size n/2 2 shifts and 3 additions on *n*-bit values

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

Number of
subproblemsCost of
subproblem15n



k levels

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

How many levels?

Problem size at k^{th} level: $\frac{n}{2^k}$

Base case: n = 1

At level k, it should be the case that $\frac{n}{2^k} = 1$

$$n = 2^k \Rightarrow k = \log_2 n$$

Number of Cost of subproblems subproblem 1 5n $\frac{5n}{2}$ 4 <u>5n</u> 16 Δ^k

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

$$k = \log_2 n$$

What is the cost?

Cost at level
$$i: 4^i \cdot \frac{5n}{2^i} = 2^i \cdot 5n$$

Total cost:
$$T(n) = \sum_{i=0}^{\log_2 n} 2^i \cdot 5n = 5n \sum_{i=0}^{\log_2 n} 2^i$$

Number of Cost of subproblems subproblem 5n1 $\frac{5n}{2}$ 4 5*n* 16 5*n* 4^k

3. Use asymptotic notation to simplify

$$T(n) = 4T(n/2) + 5n$$
$$= 5n \sum_{i=0}^{\log_2 n} 2^i$$
$$2^{\log_2 n+1}$$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

$$= 5n \cdot \frac{2^{\log_2 n+1} - 1}{2 - 1}$$
$$= 5n(2n - 1) = \Theta(n^2)$$

No better than the schoolbook method!

1

3. Use asymptotic notation to simplify

$$T(n) = 4T(n/2) + 5n$$

= $5n \sum_{i=0}^{\log_2 n} 2^i$
= $5n \cdot \frac{2^{\log_2 n+1}}{2-1}$

 $= 5n(2n-1) = \Theta(n^2)$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

Is there a $o(n^2)$ algorithm for multiplication?

1. Break into smaller subproblems

$$a \quad b = 10^{\frac{n}{2}} a + b$$

$$\times c \quad d = 10^{\frac{n}{2}} c + d$$

$$= 10^{n}(a \times c) + 10^{\frac{n}{2}}(a \times d + b \times c) + 10^{\frac{n}{2}}(a \times c \times c) + 10^{\frac{n}{2}(a \times c \times c)}(a \times c \times c) + 10^{\frac{n}{2}(a \times c \times c)}(a \times c \times c) + 10^{\frac{n}$$

Recall: previous divideand-conquer recursively computed *ac*, *ad*, *bc*, *bd*

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$
This can be

Can't avoid these

simplified!

$$(a+b)(c+d) =$$
$$ac + ad + bc + bd$$

$$\frac{ad+bc}{\mathsf{Two}} = \frac{(a+b)(c+d) - ac - bd}{\mathsf{Two}}$$

multiplications

One multiplication

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2} ((a+b)(c+d) - ac - bd) + bd$$

Recursively solve

$$T(n) =$$

2. Use recurrence relation to express recursive running time

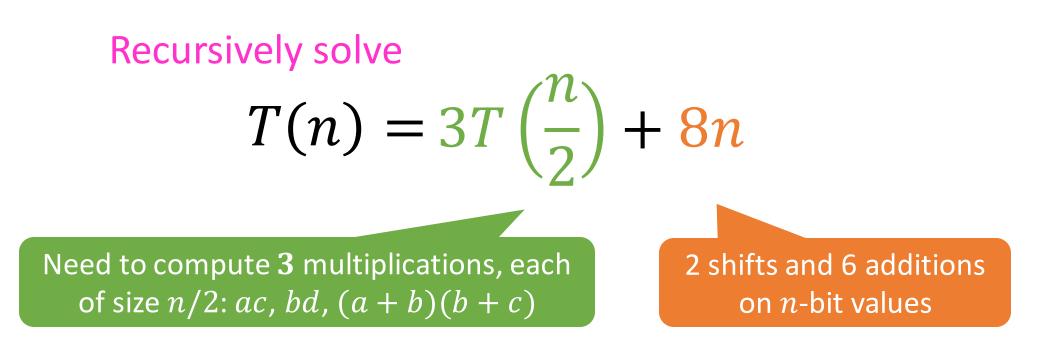
$$10^{n}(ac) + 10^{n/2}((a+b)(c+d) - ac - bd) + bd$$

Recursively solve
$$T(n) = 3T\left(\frac{n}{2}\right)$$

Need to compute **3** multiplications, each of size n/2: ac, bd, (a + b)(b + c)

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}((a+b)(c+d) - ac - bd) + bd$$



Divide:

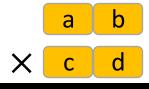
Break n-digit numbers into four numbers of ⁿ/₂ digits each (call them a, b, c, d)

Conquer:

- If n > 1:
 - Recursively compute ac, bd, (a + b)(c + d)
- If n = 1:
 - Compute ac, bd, (a + b)(c + d) directly (base case)

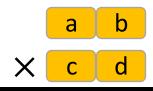
Combine:

• $10^{n}(ac) + 10^{n/2}((a+b)(c+d) - ac - bd) + bd$



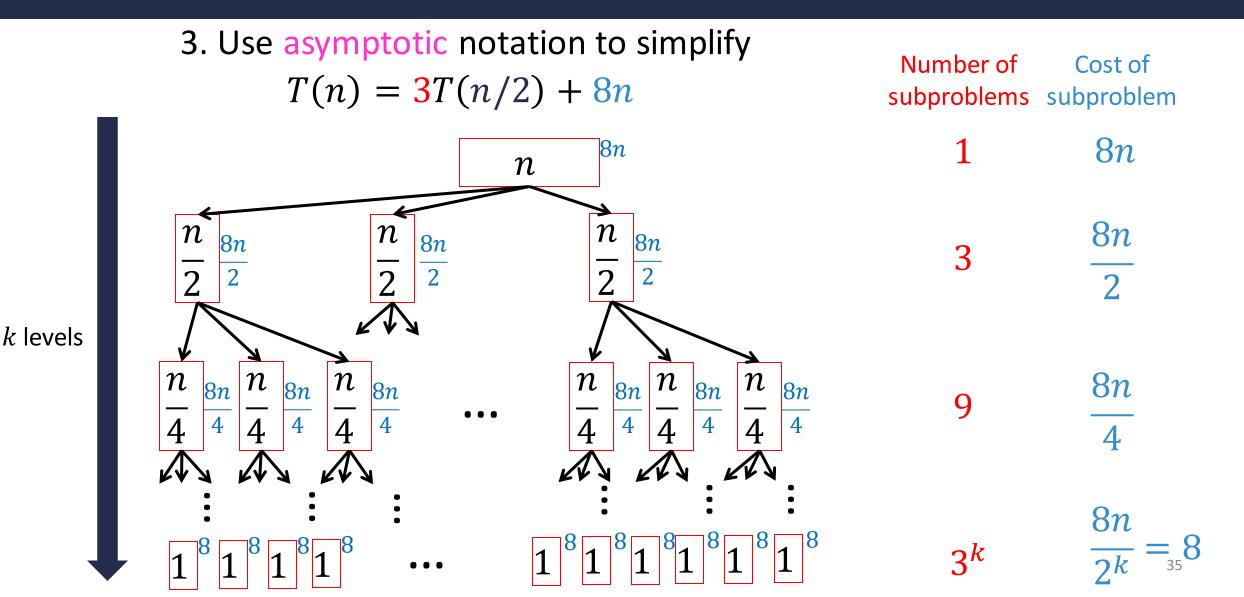
1. Recursively compute:
$$ac, bd, (a + b)(c + d)$$

2. $(ad + bc) = (a + b)(c + d) - ac - bd$
3. Return $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$



Pseudocode:

1. $x \leftarrow \text{Karatsuba}(a, c)$ 2. $y \leftarrow \text{Karatsuba}(a, d)$ 3. $z \leftarrow \text{Karatsuba}(a + b, c + d) - x - y$ $T(n) = 3T\left(\frac{n}{2}\right) + 8n$ 4. Return $10^n x + 10^{n/2} z + y$



3. Use asymptotic notation to simplify T(n) = 3T(n/2) + 8n	Number of subproblems	Cost of subproblem
How many levels?	1	8 <i>n</i>
Problem size at k^{th} level: $\frac{n}{2^k}$	3	$\frac{8n}{2}$
Base case: $n = 1$		
At level k, it should be the case that $\frac{n}{2^k} = 1$	9	$\frac{8n}{4}$
$n = 2^k \Rightarrow k = \log_2 n$		8 <i>n</i>
	3^k	$\frac{6\pi}{2^k} = 8$

3. Use asymptotic notation to simplify T(n) = 3T(n/2) + 8n	Number of subproblems	Cost of subproblem
$k = \log_2 n$	1	8 <i>n</i>
What is the cost? $(2)^{i}$	3	$\frac{8n}{2}$
Cost at level <i>i</i> : $3^i \cdot \frac{8n}{2^i} = \left(\frac{3}{2}\right)^i \cdot 8n$	9	$\underline{8n}$
Total cost: $T(n) = \sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i \cdot 8n = 8n \sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i$	$\Big)^{i}$ 3^{k}	$\frac{8n}{2^k} = 8$

3. Use asymptotic notation to simplify T(n) = 3T(n/2) + 8n

$$=8n\sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i$$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

$$= 8n \frac{(3/2)^{\log_2 n+1} - 1}{3/2 - 1}$$

$$T(n) = 8n \frac{(3/2)^{\log_2 n+1} - 1}{3/2 - 1}$$

How to simplify this (using asymptotic notation)?

Drop constant multiples

$$T(n) = 8n \frac{(3/2)^{\log_2 n+1} - 1}{3/2 - 1}$$

$$= \Theta\left(n\left(\frac{3}{2}\right)^{\log_2 n+1} - 1\right)\right)$$

$$= \Theta\left(\frac{3}{2}n \cdot \left(\frac{3}{2}\right)^{\log_2 n} - n\right)$$

How to simplify this (using asymptotic notation)?

Drop constant multiples

Distribute terms

$$T(n) = 8n \frac{(3/2)^{\log_2 n+1} - 1}{3/2 - 1}$$

$$= \Theta\left(n\left(\frac{3}{2}\right)^{\log_2 n+1} - 1\right)\right)$$

$$= \Theta\left(\frac{3}{2}n \cdot \left(\frac{3}{2}\right)^{\log_2 n} - n\right)$$

$$= \Theta\left(n \cdot \left(\frac{3}{2}\right)^{\log_2 n}\right)$$

How to simplify this (using asymptotic notation)?

Drop constant multiples

Distribute terms

Drop constants and loworder terms

41

$$T(n) = \Theta\left(n \cdot \left(\frac{3}{2}\right)^{\log_2 n}\right)$$

How to simplify this (using asymptotic notation)?

Properties of logarithms:

$$2^{\log_2 n} = n$$

 $3^{\log_2 n} = 2^{\log_2(3^{\log_2 n})} = 2^{(\log_2 n)(\log_2 3)} = (2^{\log_2 n})^{\log_2 3} = n^{\log_2 3}$
 $2^{\log_2 n} = n$
 $\log a^b = b \log a$

$$T(n) = \Theta\left(n \cdot \left(\frac{3}{2}\right)^{\log_2 n}\right)$$
$$= \Theta\left(n \cdot \left(\frac{3^{\log_2 n}}{2^{\log_2 n}}\right)\right)$$
$$= \Theta\left(n \cdot \left(\frac{n^{\log_2 3}}{n}\right)\right)$$
$$= \Theta(n^{\log_2 3}) \approx \Theta(n^{1.585})$$

How to simplify this (using asymptotic notation)?

$$2^{\log_2 n} = n$$

 $3^{\log_2 n} = n^{\log_2 3}$

1

Strictly better than schoolbook method!

