
CS 3100
Data Structures and Algorithms 2

Lecture 7: Divide and Conquer

Co-instructors:  Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:

• Section 22.3, Chapter 4, 4.3, 4.4



Can you cover an 8 × 8 grid with 1 
square missing using “trominoes?”

Tromino

Question

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

https://nstarr.people.amherst.edu/trom/puzzle-8by8/


Announcements

• Upcoming dates
• PS1 due tonight at 11:59pm

• PA1 due Sept 17 (Sunday) at 11:59pm

• Course email (comes to both professors and head TAs):

  cs3100@cshelpdesk.atlassian.net
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Single-Source Shortest Path Problem
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Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉, 
 for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for this unit): all edge weights are positive
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Dijkstra’s Algorithm Implementation
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1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:

• Add the node to 𝑆 that’s not yet in 𝑆 and that’s “nearest” to source

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢

   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: length of shortest path 
𝑠 → 𝑢 using nodes in PQ



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation
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Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Observe: shortest paths from a source forms a 
tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest 
path. (This is called the optimal substructure property.)

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Dijkstra’s Algorithm Running Time

18

𝑂 𝑉

Initialization:

𝑉  iterations

𝑂 log 𝑉

𝐸  iterations total

? ?  𝑂 log 𝑉  if we use 
indirect heaps

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉
       or, 𝑂 𝑚 log 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 



Python-like Code for Dijkstra’s Algorithm
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def Dijkstras(graph, start, end):
 distances = [∞, ∞, ∞,…]  # one index per node
 done = [False,False,False,…]  # one index per node
 PQ = priority queue  # e.g. a min heap
 PQ.insert((0, start))
 distances[start] = 0
 while 𝑃𝑄 is not empty:
  current = PQ.extractmin()
  if done[current]: continue
  done[current] = True
  for each neighbor of current:
   if not done[neighbor]:
    new_dist = distances[current]+weight(current,neighbor)
    if new_dist < distances[neighbor]:
     distances[neighbor] = new_dist
     PQ.insert((new_dist,neighbor))
 return distances[end]
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Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the 
priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance

• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢
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Graph Cuts

27

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 respects a cut 
if 𝑣1 , 𝑣2 ∈ 𝑆 or if 𝑣1 , 𝑣2 ∈ 𝑉 − 𝑆
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Notion extends naturally 
to a set of edges



Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣1 = 𝑠, … , 𝑣𝑖  have been 
removed from PQ, and for each of them 𝑑𝑣𝑖

= 𝛿(𝑠, 𝑣𝑖), and there is a 
path from 𝑠 to 𝑣𝑖  with distance 𝑑𝑣𝑖

 (whenever 𝑑𝑣𝑖
< ∞)

Base case:
• 𝑖 = 0: 𝑣1 = 𝑠

• Claim holds trivially

28



Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

Proof:
• Suppose 𝑑𝑢 < ∞

• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier 
iteration

• Consider the last time PQ. decreaseKey is invoked on node 𝑢

• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and 
node 𝑣 was extracted from PQ in a previous iteration

• In this case, 𝑑𝑢 = 𝑑𝑣 + 𝑤 𝑣, 𝑢

• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑𝑣 in 𝐺 and since 
there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑𝑢 in 𝐺
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  

30

extracted nodes

𝑠
𝑢

Extracted nodes “cuts” G into 
two subsets,(𝑆, 𝑉 − 𝑆)

𝑆



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  

31

extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠, … , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of 
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted 
before, 𝑑𝑥 = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is 
extracted, 𝑑𝑦 is updated to satisfy

𝑑𝑦 ≤ 𝑑𝑥 + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the 
node of minimal distance so 𝑑𝑢 ≤ 𝑑𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm

Conclusion:  We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

In other words, all paths 𝑠, … , 𝑢  are no shorter than 𝑑𝑢

which makes it the shortest path (or one of equally shortest paths).
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Divide and Conquer, Recurrences



Can you cover an 8 × 8 grid with 1 
square missing using “trominoes?”

Tromino

Question

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

https://nstarr.people.amherst.edu/trom/puzzle-8by8/


Trominoes

What about larger boards?

2𝑛

2𝑛



Trominoes Puzzle Solution

Divide the board into quadrants



Trominoes Puzzle Solution

Place a tromino to occupy the three 
quadrants without the missing piece



Trominoes Puzzle Solution

Place a tromino to occupy the three 
quadrants without the missing piece



Trominoes Puzzle Solution

Observe: Each quadrant is now a smaller subproblem!



Trominoes Puzzle Solution

Solve Recursively



Trominoes Puzzle Solution

Solve Recursively



Trominoes Puzzle Solution

Our first algorithmic technique!



Divide and Conquer

Divide: 
• Break the problem into multiple 

subproblems, each smaller instances of the 
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively

• If the subproblems are “small”:
• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain 

solution for original problem

When is this an 
effective strategy?

[CLRS Chapter 4]



Analyzing Divide and Conquer

1. Break into smaller subproblems

2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: 𝐷(𝑛) time

Conquer: Recurse on smaller problems of size 𝑠1 , … , 𝑠𝑘

Combine: 𝐶(𝑛) time

Recurrence: 
• 𝑇 𝑛 = 𝐷 𝑛 + σ𝑖∈[𝑘] 𝑇(𝑠𝑖) + 𝐶(𝑛)



Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify



Merge Sort

Divide: 
• Break 𝑛-element list into two lists of Τ𝑛

2 elements

Conquer:
• If 𝑛 > 1:

• Sort each sublist recursively

• If 𝑛 = 1:
• List is already sorted (base case)

Combine:
• Merge together sorted sublists into one sorted list



Merge

Combine: Merge sorted sublists into one sorted list

Inputs:
• 2 sorted lists (𝐿1 , 𝐿2)
• 1 output list (𝐿𝑜𝑢𝑡)

While (𝐿1 and 𝐿2 not empty):

 If 𝐿1 0 ≤ 𝐿2[0]: 

  𝐿𝑜𝑢𝑡.append(𝐿1.pop())

 Else: 

  𝐿𝑜𝑢𝑡.append(𝐿2.pop())

𝐿𝑜𝑢𝑡.append(𝐿1)

𝐿𝑜𝑢𝑡.append(𝐿2)



Analyzing Merge Sort

1. Break into smaller subproblems

2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small problems, size 
𝑛

2

Combine: 𝑛 comparisons

Recurrence: 
• 𝑇 𝑛 = 2𝑇( Τ𝑛 2) + 𝑛



Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution



Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1



Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

Number of 
subproblems

1



Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑘 levels

Number of 
subproblems

1

2

4

2𝑘

Cost of 
subproblem

𝑛

𝑛/2

𝑛/4



Tree Method

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

3. Use asymptotic notation to simplify

How many levels?

Problem size at 𝑘th level:

Base case:

At level 𝑘, it should be the case that 
𝑛

2𝑘 = 1

𝑛 = 2𝑘 ⇒ 𝑘 = log2 𝑛

𝑛

2𝑘

𝑛 = 1

Number of 
subproblems

1

2

4

2𝑘

Cost of 
subproblem

𝑛

𝑛/2

𝑛/4



Tree Method

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

3. Use asymptotic notation to simplify

𝑘 = log2 𝑛

What is the cost?

Cost at level 𝑖:

Total cost:

= Θ 𝑛 log 𝑛

= 𝑛 log2 𝑛

Number of 
subproblems

1

2

4

2𝑘

Cost of 
subproblem

𝑛

𝑛/2

𝑛/4



Multiplication

Want to multiply large numbers together

59

𝑛-digit numbers

number of digits

number of elementary operations
(single-digit multiplications)

How do we measure input size? 

What do we “count” for run time?



“Schoolbook” Multiplication

60

How many multiplications?

𝑛-digit numbers

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 levels

⇒ Θ(𝑛2) 

What about cost 
of additions?

Θ(𝑛2) 



“Schoolbook” Multiplication

61

How many multiplications?

𝑛-digit numbers

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 levels

⇒ Θ(𝑛2) 

What about cost 
of additions?

Θ(𝑛2) 

Can we do 
better?



(                                       )

(                  )

Divide and Conquer Multiplication

62

1. Break into smaller subproblems

𝑎 𝑏

𝑐 𝑑

𝑎 𝑏+

𝑐 𝑑+

(                  )

𝑎 𝑐

𝑎 𝑑 𝑏 𝑐+

𝑏 𝑑

+

+



Divide and Conquer Multiplication

Divide: 
• Break 𝑛-digit numbers into four numbers of 𝑛/2 digits each 

(call them 𝑎, 𝑏, 𝑐, 𝑑)

Conquer:
• If 𝑛 > 1:

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑

• If 𝑛 = 1: (i.e. one digit each)
• Compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 directly (base case)

Combine:
• 10𝑛 𝑎𝑐 + 10𝑛/2 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

63

For simplicity, assume 
that 𝑛 = 2𝑘 is a 

power of 2



Divide and Conquer Multiplication

64

Recursively solve

2. Use recurrence relation to express recursive running time



Divide and Conquer Multiplication

65

Recursively solve

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications, 
each of size 𝑛/2



Divide and Conquer Multiplication

66

Recursively solve

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications, 
each of size 𝑛/2

2 shifts and 3 additions 
on 𝑛-bit values



Divide and Conquer Multiplication

67

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

𝑛 5𝑛

5𝑛

2

5

5𝑛

2

5𝑛

2

5𝑛

2

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4
… 5𝑛

4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

Number of 
subproblems

1

4

16

4𝑘

𝑘 levels

Cost of 
subproblem

5𝑛



Divide and Conquer Multiplication

68

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify
Number of 

subproblems

1

4

16

4𝑘

Cost of 
subproblem

5𝑛
How many levels?

Problem size at 𝑘th level:

Base case:

At level 𝑘, it should be the case that 
𝑛

2𝑘 = 1

𝑛 = 2𝑘 ⇒ 𝑘 = log2 𝑛

𝑛

2𝑘

𝑛 = 1



Divide and Conquer Multiplication

69

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify
Number of 

subproblems

1

4

16

4𝑘

Cost of 
subproblem

5𝑛
𝑘 = log2 𝑛

What is the cost?

Cost at level 𝑖:

Total cost:



Divide and Conquer Multiplication

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

= 5𝑛 2𝑛 − 1 = Θ(𝑛2)
No better than the 

schoolbook method!



Divide and Conquer Multiplication

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

= 5𝑛 2𝑛 − 1 = Θ(𝑛2)

Is there a 𝑜(𝑛2) 
algorithm for 

multiplication?
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