
CS 3100
Data Structures and Algorithms 2

Lecture 7: Divide and Conquer

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:

• Section 22.3, Chapter 4, 4.3, 4.4

Can you cover an 8 × 8 grid with 1
square missing using “trominoes?”

Tromino

Question

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Announcements

• Upcoming dates
• PS1 due tonight at 11:59pm

• PA1 due Sept 17 (Sunday) at 11:59pm

• Course email (comes to both professors and head TAs):

 cs3100@cshelpdesk.atlassian.net

3

Single-Source Shortest Path Problem

4

Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉,
 for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for this unit): all edge weights are positive

10

2

11

9
5

8

3

7

3

1

8

12

9

6

Dijkstra’s Algorithm Implementation

5

1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:

• Add the node to 𝑆 that’s not yet in 𝑆 and that’s “nearest” to source

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢

 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: length of shortest path
𝑠 → 𝑢 using nodes in PQ

Dijkstra’s Algorithm Implementation

6

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

2

6
11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

7

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

∞

∞

∞

∞
∞

∞

∞

Dijkstra’s Algorithm Implementation

8

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

9

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

Dijkstra’s Algorithm Implementation

10

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

∞

18

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

11

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

12

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

13

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

14

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

15

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

30

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

16

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

17

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Observe: shortest paths from a source forms a
tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest
path. (This is called the optimal substructure property.)

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Running Time

18

𝑂 𝑉

Initialization:

𝑉 iterations

𝑂 log 𝑉

𝐸 iterations total

? ? 𝑂 log 𝑉 if we use
indirect heaps

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉
 or, 𝑂 𝑚 log 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

Python-like Code for Dijkstra’s Algorithm

19

def Dijkstras(graph, start, end):
 distances = [∞, ∞, ∞,…] # one index per node
 done = [False,False,False,…] # one index per node
 PQ = priority queue # e.g. a min heap
 PQ.insert((0, start))
 distances[start] = 0
 while 𝑃𝑄 is not empty:
 current = PQ.extractmin()
 if done[current]: continue
 done[current] = True
 for each neighbor of current:
 if not done[neighbor]:
 new_dist = distances[current]+weight(current,neighbor)
 if new_dist < distances[neighbor]:
 distances[neighbor] = new_dist
 PQ.insert((new_dist,neighbor))
 return distances[end]

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm

20

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

∞

∞

∞

∞

∞ ∞

∞

∞

Node Done?

0 F

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

21

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

∞

∞ ∞

∞

∞

Node Done?

0 T

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

22

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

18

∞ ∞

∞

∞

Node Done?

0 T

1 T

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 18

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

23

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 15

4 18

5 13

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

24

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 T

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 14

4 18

5 13

6 ∞

7 20

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm Implementation

25

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

2

6
11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞

Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the
priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance

• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

26

Graph Cuts

27

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 respects a cut
if 𝑣1 , 𝑣2 ∈ 𝑆 or if 𝑣1 , 𝑣2 ∈ 𝑉 − 𝑆

10

2

6
11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Notion extends naturally
to a set of edges

Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣1 = 𝑠, … , 𝑣𝑖 have been
removed from PQ, and for each of them 𝑑𝑣𝑖

= 𝛿(𝑠, 𝑣𝑖), and there is a
path from 𝑠 to 𝑣𝑖 with distance 𝑑𝑣𝑖

 (whenever 𝑑𝑣𝑖
< ∞)

Base case:
• 𝑖 = 0: 𝑣1 = 𝑠

• Claim holds trivially

28

Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

Proof:
• Suppose 𝑑𝑢 < ∞

• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier
iteration

• Consider the last time PQ. decreaseKey is invoked on node 𝑢

• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and
node 𝑣 was extracted from PQ in a previous iteration

• In this case, 𝑑𝑢 = 𝑑𝑣 + 𝑤 𝑣, 𝑢

• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑𝑣 in 𝐺 and since
there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑𝑢 in 𝐺

29

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

30

extracted nodes

𝑠
𝑢

Extracted nodes “cuts” G into
two subsets,(𝑆, 𝑉 − 𝑆)

𝑆

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

31

extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠, … , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

32

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted
before, 𝑑𝑥 = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

33

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is
extracted, 𝑑𝑦 is updated to satisfy

𝑑𝑦 ≤ 𝑑𝑥 + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

34

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the
node of minimal distance so 𝑑𝑢 ≤ 𝑑𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

35

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm

Conclusion: We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

In other words, all paths 𝑠, … , 𝑢 are no shorter than 𝑑𝑢

which makes it the shortest path (or one of equally shortest paths).

36

Divide and Conquer, Recurrences

Can you cover an 8 × 8 grid with 1
square missing using “trominoes?”

Tromino

Question

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Trominoes

What about larger boards?

2𝑛

2𝑛

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
quadrants without the missing piece

Trominoes Puzzle Solution

Place a tromino to occupy the three
quadrants without the missing piece

Trominoes Puzzle Solution

Observe: Each quadrant is now a smaller subproblem!

Trominoes Puzzle Solution

Solve Recursively

Trominoes Puzzle Solution

Solve Recursively

Trominoes Puzzle Solution

Our first algorithmic technique!

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively

• If the subproblems are “small”:
• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

When is this an
effective strategy?

[CLRS Chapter 4]

Analyzing Divide and Conquer

1. Break into smaller subproblems

2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: 𝐷(𝑛) time

Conquer: Recurse on smaller problems of size 𝑠1 , … , 𝑠𝑘

Combine: 𝐶(𝑛) time

Recurrence:
• 𝑇 𝑛 = 𝐷 𝑛 + σ𝑖∈[𝑘] 𝑇(𝑠𝑖) + 𝐶(𝑛)

Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify

Merge Sort

Divide:
• Break 𝑛-element list into two lists of Τ𝑛

2 elements

Conquer:
• If 𝑛 > 1:

• Sort each sublist recursively

• If 𝑛 = 1:
• List is already sorted (base case)

Combine:
• Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list

Inputs:
• 2 sorted lists (𝐿1 , 𝐿2)
• 1 output list (𝐿𝑜𝑢𝑡)

While (𝐿1 and 𝐿2 not empty):

 If 𝐿1 0 ≤ 𝐿2[0]:

 𝐿𝑜𝑢𝑡.append(𝐿1.pop())

 Else:

 𝐿𝑜𝑢𝑡.append(𝐿2.pop())

𝐿𝑜𝑢𝑡.append(𝐿1)

𝐿𝑜𝑢𝑡.append(𝐿2)

Analyzing Merge Sort

1. Break into smaller subproblems

2. Use recurrence relation to express recursive running time

3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small problems, size
𝑛

2

Combine: 𝑛 comparisons

Recurrence:
• 𝑇 𝑛 = 2𝑇(Τ𝑛 2) + 𝑛

Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

Number of
subproblems

1

Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑘 levels

Number of
subproblems

1

2

4

2𝑘

Cost of
subproblem

𝑛

𝑛/2

𝑛/4

Tree Method

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

3. Use asymptotic notation to simplify

How many levels?

Problem size at 𝑘th level:

Base case:

At level 𝑘, it should be the case that
𝑛

2𝑘 = 1

𝑛 = 2𝑘 ⇒ 𝑘 = log2 𝑛

𝑛

2𝑘

𝑛 = 1

Number of
subproblems

1

2

4

2𝑘

Cost of
subproblem

𝑛

𝑛/2

𝑛/4

Tree Method

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

3. Use asymptotic notation to simplify

𝑘 = log2 𝑛

What is the cost?

Cost at level 𝑖:

Total cost:

= Θ 𝑛 log 𝑛

= 𝑛 log2 𝑛

Number of
subproblems

1

2

4

2𝑘

Cost of
subproblem

𝑛

𝑛/2

𝑛/4

Multiplication

Want to multiply large numbers together

59

𝑛-digit numbers

number of digits

number of elementary operations
(single-digit multiplications)

How do we measure input size?

What do we “count” for run time?

“Schoolbook” Multiplication

60

How many multiplications?

𝑛-digit numbers

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 levels

⇒ Θ(𝑛2)

What about cost
of additions?

Θ(𝑛2)

“Schoolbook” Multiplication

61

How many multiplications?

𝑛-digit numbers

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 mults

𝑛 levels

⇒ Θ(𝑛2)

What about cost
of additions?

Θ(𝑛2)

Can we do
better?

()

()

Divide and Conquer Multiplication

62

1. Break into smaller subproblems

𝑎 𝑏

𝑐 𝑑

𝑎 𝑏+

𝑐 𝑑+

()

𝑎 𝑐

𝑎 𝑑 𝑏 𝑐+

𝑏 𝑑

+

+

Divide and Conquer Multiplication

Divide:
• Break 𝑛-digit numbers into four numbers of 𝑛/2 digits each

(call them 𝑎, 𝑏, 𝑐, 𝑑)

Conquer:
• If 𝑛 > 1:

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑

• If 𝑛 = 1: (i.e. one digit each)
• Compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 directly (base case)

Combine:
• 10𝑛 𝑎𝑐 + 10𝑛/2 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

63

For simplicity, assume
that 𝑛 = 2𝑘 is a

power of 2

Divide and Conquer Multiplication

64

Recursively solve

2. Use recurrence relation to express recursive running time

Divide and Conquer Multiplication

65

Recursively solve

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications,
each of size 𝑛/2

Divide and Conquer Multiplication

66

Recursively solve

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications,
each of size 𝑛/2

2 shifts and 3 additions
on 𝑛-bit values

Divide and Conquer Multiplication

67

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

𝑛 5𝑛

5𝑛

2

5

5𝑛

2

5𝑛

2

5𝑛

2

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4
… 5𝑛

4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

Number of
subproblems

1

4

16

4𝑘

𝑘 levels

Cost of
subproblem

5𝑛

Divide and Conquer Multiplication

68

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify
Number of

subproblems

1

4

16

4𝑘

Cost of
subproblem

5𝑛
How many levels?

Problem size at 𝑘th level:

Base case:

At level 𝑘, it should be the case that
𝑛

2𝑘 = 1

𝑛 = 2𝑘 ⇒ 𝑘 = log2 𝑛

𝑛

2𝑘

𝑛 = 1

Divide and Conquer Multiplication

69

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify
Number of

subproblems

1

4

16

4𝑘

Cost of
subproblem

5𝑛
𝑘 = log2 𝑛

What is the cost?

Cost at level 𝑖:

Total cost:

Divide and Conquer Multiplication

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

= 5𝑛 2𝑛 − 1 = Θ(𝑛2)
No better than the

schoolbook method!

Divide and Conquer Multiplication

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

= 5𝑛 2𝑛 − 1 = Θ(𝑛2)

Is there a 𝑜(𝑛2)
algorithm for

multiplication?

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 7: Divide and Conquer
	Slide 2: Question
	Slide 3: Announcements
	Slide 4: Single-Source Shortest Path Problem
	Slide 5: Dijkstra’s Algorithm Implementation
	Slide 6: Dijkstra’s Algorithm Implementation
	Slide 7: Dijkstra’s Algorithm Implementation
	Slide 8: Dijkstra’s Algorithm Implementation
	Slide 9: Dijkstra’s Algorithm Implementation
	Slide 10: Dijkstra’s Algorithm Implementation
	Slide 11: Dijkstra’s Algorithm Implementation
	Slide 12: Dijkstra’s Algorithm Implementation
	Slide 13: Dijkstra’s Algorithm Implementation
	Slide 14: Dijkstra’s Algorithm Implementation
	Slide 15: Dijkstra’s Algorithm Implementation
	Slide 16: Dijkstra’s Algorithm Implementation
	Slide 17: Dijkstra’s Algorithm Implementation
	Slide 18: Dijkstra’s Algorithm Running Time
	Slide 19: Python-like Code for Dijkstra’s Algorithm
	Slide 20: Dijkstra’s Algorithm
	Slide 21: Dijkstra’s Algorithm
	Slide 22: Dijkstra’s Algorithm
	Slide 23: Dijkstra’s Algorithm
	Slide 24: Dijkstra’s Algorithm
	Slide 25: Dijkstra’s Algorithm Implementation
	Slide 26: Dijkstra’s Algorithm Proof Strategy
	Slide 27: Graph Cuts
	Slide 28: Correctness of Dijkstra’s Algorithm
	Slide 29: Correctness of Dijkstra’s Algorithm: Claim 1
	Slide 30: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 31: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 32: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 33: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 34: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 35: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 36: Correctness of Dijkstra’s Algorithm
	Slide 37: Divide and Conquer, Recurrences
	Slide 38: Question
	Slide 39: Trominoes
	Slide 40: Trominoes Puzzle Solution
	Slide 41: Trominoes Puzzle Solution
	Slide 42: Trominoes Puzzle Solution
	Slide 43: Trominoes Puzzle Solution
	Slide 44: Trominoes Puzzle Solution
	Slide 45: Trominoes Puzzle Solution
	Slide 46: Trominoes Puzzle Solution
	Slide 47: Divide and Conquer
	Slide 48: Analyzing Divide and Conquer
	Slide 49: Recurrence Solving Techniques
	Slide 50: Merge Sort
	Slide 51: Merge
	Slide 52: Analyzing Merge Sort
	Slide 53: Recurrence Solving Techniques
	Slide 54: Tree Method
	Slide 55: Tree Method
	Slide 56: Tree Method
	Slide 57: Tree Method
	Slide 58: Tree Method
	Slide 59: Multiplication
	Slide 60: “Schoolbook” Multiplication
	Slide 61: “Schoolbook” Multiplication
	Slide 62: Divide and Conquer Multiplication
	Slide 63: Divide and Conquer Multiplication
	Slide 64: Divide and Conquer Multiplication
	Slide 65: Divide and Conquer Multiplication
	Slide 66: Divide and Conquer Multiplication
	Slide 67: Divide and Conquer Multiplication
	Slide 68: Divide and Conquer Multiplication
	Slide 69: Divide and Conquer Multiplication
	Slide 70: Divide and Conquer Multiplication
	Slide 71: Divide and Conquer Multiplication

