CS 3100 Data Structures and Algorithms 2 Lecture 7: Divide and Conquer

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS 4th edition:

• Section 22.3, Chapter 4, 4.3, 4.4

Question

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Announcements

- Upcoming dates
 - PS1 due tonight at 11:59pm
 - PA1 due Sept 17 (Sunday) at 11:59pm
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Single-Source Shortest Path Problem

Find the <u>shortest path</u> based on sum of edge-weights from UVA to each of these other places. **The problem:** Given a graph G = (V, E) and a start node (i.e., source) $s \in V$,

for each $v \in V$ find the minimum-weight path from $s \to v$ (call this weight $\delta(s, v)$) Assumption (for this unit): all edge weights are positive

- 1. Start with an empty tree *S* and add the source to *S*
- 2. Repeat |V| 1 times:
 - Add the node to S that's not yet in S and that's "nearest" to source

Implementation:

initialize $d_v = \infty$ for each node vadd all nodes $v \in V$ to the priority queue PQ, using d_v as the key set $d_s = 0$ while PQ is not empty: v = PQ. extractMin() for each $u \in V$ such that $(v, u) \in E$: if $u \in PQ$ and $d_v + w(v, u) < d_u$: PQ. decreaseKey $(u, d_v + w(v, u))$ u. parent = v

each node also maintains a parent, initially NULL

key: length of shortest path $s \rightarrow u$ using nodes in PQ

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ. extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                          8
               if u \in PQ and d_v + w(v, u) < d_v:
                                                                                 \infty
                                                                                                  \infty
                                                                       10
                                                                                                         8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                             \infty
                         u.parent = v
                                                                             9
                                                                                                    5
                                                                                       \infty
                                                                                                          9
                                                                                                                        \infty
                                                                   12
                                                                                   3
                                                                                           3
                                                                          \infty
                                                                                                                    11
                                                                                                  6
                                                                                         \infty
                                                                                                                   6
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ. extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                         8
               if u \in PQ and d_v + w(v, u) < d_v:
                                                                                                 \infty
                                                                      10
                                                                                                       8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                            \infty
                         u.parent = v
                                                                            9
                                                                                                   5
                                                                                      \infty
                                                                                                         9
                                                                                                                      \infty
                                                                  12
                                                                                  3
                                                                                          3
                                                                         \infty
                                                                                                                  11
                                                                                                 6
                                                                                        \infty
                                                                                                                  7
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                        8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                                                \infty
                                                                     10
                                                                                                      8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                           \infty
                        u.parent = v
                                                                           9
                                                                                                 5
                                                                                     \infty
                                                                                                        9
                                                                                                                     \infty
                                                                 12
                                                                                 3
                                                                                         3
                                                                                                                 11
                                                                                               6
                                                                                       \infty
                                                                                                                8
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                        8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                                                \infty
                                                                     10
                                                                                                      8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                           \infty
                        u.parent = v
                                                                           9
                                                                                                 5
                                                                                    \infty
                                                                                                        9
                                                                                                                     \infty
                                                                 12
                                                                                 3
                                                                                         3
                                                                                                                 11
                                                                                               6
                                                                                       \infty
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                       8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                                              18
                                                                    10
                                                                                                    8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                         \infty
                        u.parent = v
                                                                         9
                                                                                                5
                                                                                   \infty
                                                                                                      9
                                                                                                                   \infty
                                                                12
                                                                               3
                                                                                       3
                                                                                                               11
                                                                                              6
                                                                                      \infty
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                    8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                                           18
                                                                  10
                                                                                                 8
                       PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                      \infty
                       u.parent = v
                                                                       9
                                                                                             5
                                                                                                   9
                                                                                                                \infty
                                                              12
                                                                                     3
                                                                                                            11
                                                                                           6
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                     8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                                            18
                                                                  10
                                                                                                  8
                       PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                      \infty
                       u.parent = v
                                                                        9
                                                                                             5
                                                                                                    9
                                                                                                                \infty
                                                               12
                                                                                     3
                                                                                                            11
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                     8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                                            18
                                                                  10
                                                                                                  8
                       PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                      \infty
                       u.parent = v
                                                                        9
                                                                                             5
                                                                                                    9
                                                                                                                \infty
                                                               12
                                                                                     3
                                                                                                            11
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                    8
              if u \in PQ and d_v + w(v, u) < d_v:
                                                                  10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u.parent = v
                                                                       9
                                                                                            5
                                                                                                  9
                                                                                                               \infty
                                                              12
                                                                                    3
                                                                                                           11
```

Implementation:

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                  8
             if u \in PQ and d_v + w(v, u) < d_u:
                                                                 10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u.parent = v
                                                                      9
                                                                                           5
                                                                                                 9
                                                             12
                                                                                   3
```

15

Implementation:

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                  8
             if u \in PQ and d_v + w(v, u) < d_v:
                                                                 10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u.parent = v
                                                                      9
                                                                                           5
                                                                                                 9
                                                                                                             28
                                                             12
                                                                                   3
                                                                                                         11
```

16

Implementation:

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
v = PQ. extractMin()
for each u \in V such that (v, u) \in E:
if u \in PQ and d_v + w(v, u) < d_u:
PQ. decreaseKey(u, d_v + w(v, u))
u. parent = v
```

Observe: shortest paths from a source forms a <u>tree</u>, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest path. (This is called the *optimal substructure property*.)

Dijkstra's Algorithm Running Time

Implementation:

```
initialize d_v = \infty for each node v
                                                                             Initialization:
add all nodes v \in V to the priority queue PQ, using d_v as the key
                                                                                      O(|V|)
set d_s = 0
                                                                             |V| iterations
while PQ is not empty:
    v = PQ.extractMin()
                                                                             O(\log|V|)
    for each u \in V such that (v, u) \in E:
                                                                             |E| iterations total
             if u \in PQ and d_v + w(v, u) < d_v:
                       PQ. decreaseKey(u, d_v + w(v, u))
                                                                             ?? O(\log|V|) if we use
                                                                             indirect heaps
                       u. parent = v
```

```
|V| = n|E| = m
```

Overall running time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$ or, $O(m \log n)$

Python-like Code for Dijkstra's Algorithm

def Dijkstras(graph, start, end):

```
distances = [\infty, \infty, \infty, ...] # one index per node
done = [False, False, False, ...] # one index per node
                                                              10
PQ = priority queue # e.g. a min heap
PQ.insert((0, start))
distances[start] = 0
while PQ is not empty:
        current = PQ.extractmin()
        if done[current]: continue
        done[current] = True
        for each neighbor of current:
                 if not done[neighbor]:
                         new_dist = distances[current]+weight(current,neighbor)
                         if new dist < distances[neighbor]:
                                  distances[neighbor] = new_dist
                                  PQ.insert((new dist, neighbor))
```

return distances[end]

8

3

3

5

4

5

9

6

11

Start: 0 End: 8

Node	Done?	Node	Distance
0	F	0	0
1	F	1	∞
2	F	2	∞
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	F	2	12
3	F	3	∞
4	F	4	18
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	15
4	F	4	18
5	F	5	13
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	14
4	F	4	18
5	Т	5	13
6	F	6	∞
7	F	7	20
8	F	8	∞


```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ. extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                          8
               if u \in PQ and d_v + w(v, u) < d_u:
                                                                                 \infty
                                                                                                  \infty
                                                                       10
                                                                                                        8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                             \infty
                         u.parent = v
                                                                            9
                                                                                                    5
                                                                                       \infty
                                                                                                          9
                                                                                                                        \infty
                                                                   12
                                                                                   3
                                                                                           3
                                                                          \infty
                                                                                                                   11
                                                                                                  6
                                                                                         \infty
                                                                                                                  25
```

Dijkstra's Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_u = \delta(s, u)$ where $\delta(s, u)$ is the shortest distance

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Graph Cuts

Inductive hypothesis: Suppose that nodes $v_1 = s, ..., v_i$ have been removed from PQ, and for each of them $d_{v_i} = \delta(s, v_i)$, and there is a path from s to v_i with distance d_{v_i} (whenever $d_{v_i} < \infty$)

Base case:

- $i = 0: v_1 = s$
- Claim holds trivially

Let u be the $(i + 1)^{st}$ node extracted

Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G

Proof:

- Suppose $d_u < \infty$
- This means that PQ. decreaseKey was invoked on node u on an earlier iteration
- Consider the last time PQ. decreaseKey is invoked on node *u*
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_u = d_v + w(v, u)$
- By the inductive hypothesis, there is a path $s \to v$ of length d_v in G and since there is an edge $(v, u) \in E$, there is a path $s \to u$ of length d_u in G

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into two subsets, (S, V - S)

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

 $w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$

w(s, ..., u) = w(s, ..., x) + w(x, y) + w(y, ..., u) $w(s, ..., x) \ge \delta(s, x) \text{ since } \delta(s, x) \text{ is weight of shortest path from } s \text{ to } x$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$$
$$= d_x + w(x, y) + w(y, \dots, u)$$

Inductive hypothesis: since *x* was extracted before, $d_x = \delta(s, x)$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$

By construction of Dijkstra's algorithm, when x is extracted, d_y is updated to satisfy $d_y \le d_x + w(x, y)$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$
 $\geq d_u + w(y, ..., u)$

Greedy choice property: we always extract the node of minimal distance so $d_u \leq d_y$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$
 $\geq d_u + w(y, ..., u)$
 $\geq d_u$

All edge weights assumed to be positive

Conclusion: We used proof by induction to show:

When node u is removed from the priority queue, $d_u = \delta(s, u)$

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path $(s, ..., u), w(s, ..., u) \ge d_u$

In other words, all paths (s, ..., u) are no shorter than d_u which makes it the shortest path (or one of equally shortest paths).

Divide and Conquer, Recurrences

Question

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Trominoes

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Place a tromino to occupy the three quadrants without the missing piece

Observe: Each quadrant is now a smaller subproblem!

Solve **Recursively**

Solve **Recursively**

Our first algorithmic technique!

Divide and Conquer

[CLRS Chapter 4]

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

• Merge solutions to subproblems to obtain solution for original problem

When is this an effective strategy?

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

•
$$T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$$

Recurrence Solving Techniques

"Cookbook" MAGIC!

Substitution

substitute in to simplify

Merge Sort

Divide:

• Break *n*-element list into two lists of n/2 elements

Conquer:

- If *n* > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

Combine:

• Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list

Inputs:

- 2 sorted lists (L_1, L_2)
- 1 output list (*L*_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \leq L_2[0]:

L_{out}.append(L_1.pop())

Else:

L_{out}.append(L_2.pop())

L_{out}.append(L_1)

L_{out}.append(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small problems, size $\frac{n}{2}$

Combine: *n* comparisons

Recurrence:

• T(n) = 2T(n/2) + n

Recurrence Solving Techniques

? Guess/Check

"Cookbook"

Substitution

Use asymptotic notation to simplify
T(n) = 2T(n/2) + n
How many levels?
Problem size at k^{th} level: $\frac{n}{2^k}$

Base case: n = 1

At level k, it should be the case that $\frac{n}{2^k} = 1$

$$n = 2^k \Rightarrow k = \log_2 n$$

3. Use asymptotic notation to simplify T(n) = 2T(n/2) + n	Number of subproblems	Cost of subproblem
$k = \log_2 n$	1	n
108210	2	<i>n</i> /2
What is the cost?	4	
Cost at level <i>i</i> : $2^i \cdot \frac{n}{2^i} = n$	4	<i>n</i> /4
Total cost: $T(n) = \sum_{n=1}^{\log_2 n} n = n \sum_{n=1}^{\log_2 n} 1 = n \log_2 n$	2 ^{<i>k</i>}	$\frac{n}{2^k} = 1$
$\overline{i=0} \qquad \overline{i=0} = \Theta(n \log n)$	<i>n</i>)	

Multiplication

Want to multiply large numbers together

How do we measure input size?

What do we "count" for run time?

number of digits

number of <u>elementary</u> operations (single-digit multiplications)

"Schoolbook" Multiplication

"Schoolbook" Multiplication

Can we do		Но	ow many multiplications?
better?	4102	a digit a	
	× 1819	<i>n</i> -digit nu	umpers
What about cost	36918	<i>n</i> mults	
of additions?	4102	n mults	> n levels
$\Theta(n^2)$ 3 2	2816	<i>n</i> mults	$(\Rightarrow \Theta(n^2))$
+ 4 2	102	n mults)	
74	461538		61

1. Break into smaller subproblems

$$a \quad b = 10^{\frac{n}{2}} a + b$$

$$\times c \quad d = 10^{\frac{n}{2}} c + d$$

$$= 10^{n} (a \times c) + 10^{\frac{n}{2}} (a \times d + b \times c) + (b \times d)$$

Divide:

• Break *n*-digit numbers into four numbers of *n*/2 digits each (call them *a*, *b*, *c*, *d*)

Conquer:

- If n > 1:
 - Recursively compute *ac*, *ad*, *bc*, *bd*
- If n = 1: (i.e. one digit each)
 - Compute *ac*, *ad*, *bc*, *bd* directly (base case)

Combine:

• $10^n(ac) + 10^{n/2}(ad + bc) + bd$

For simplicity, assume that $n = 2^k$ is a power of 2

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

T(n)

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right)$$

Need to compute 4 multiplications, each of size n/2

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Need to compute 4 multiplications, each of size n/2 2 shifts and 3 additions on *n*-bit values

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

Number of
subproblemsCost of
subproblem15n

k levels

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

How many levels?

Problem size at k^{th} level: $\frac{n}{2^k}$

Base case: n = 1

At level k, it should be the case that $\frac{n}{2^k} = 1$

$$n = 2^k \Rightarrow k = \log_2 n$$

Number of Cost of subproblems subproblem 1 5n $\frac{5n}{2}$ 4 <u>5n</u> 16 Δ^k

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

$$k = \log_2 n$$

What is the cost?

Cost at level
$$i: 4^i \cdot \frac{5n}{2^i} = 2^i \cdot 5n$$

Total cost:
$$T(n) = \sum_{i=0}^{\log_2 n} 2^i \cdot 5n = 5n \sum_{i=0}^{\log_2 n} 2^i$$

Number of Cost of subproblems subproblem 5n1 $\frac{5n}{2}$ 4 5*n* 16 5*n* 4^k

3. Use asymptotic notation to simplify

$$T(n) = 4T(n/2) + 5n$$
$$= 5n \sum_{i=0}^{\log_2 n} 2^i$$
$$2^{\log_2 n+1}$$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

$$= 5n \cdot \frac{2^{\log_2 n+1} - 1}{2 - 1}$$
$$= 5n(2n - 1) = \Theta(n^2)$$

No better than the schoolbook method!

1

3. Use asymptotic notation to simplify

$$T(n) = 4T(n/2) + 5n$$

= $5n \sum_{i=0}^{\log_2 n} 2^i$
= $5n \cdot \frac{2^{\log_2 n+1}}{2-1}$

 $= 5n(2n-1) = \Theta(n^2)$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

Is there a $o(n^2)$ algorithm for multiplication?