CS 3100

Data Structures and Algorithms 2 Lecture 7: Divide and Conquer

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Section 22.3, Chapter 4, 4.3, 4.4

Question

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

Tromino

Announcements

- Upcoming dates
- PS1 due tonight at 11:59pm
- PA1 due Sept 17 (Sunday) at 11:59pm
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Single-Source Shortest Path Problem

Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph $G=(V, E)$ and a start node (i.e., source) $s \in V$,
for each $v \in V$ find the minimum-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)
Assumption (for this unit): all edge weights are positive

Dijkstra's Algorithm Implementation

1. Start with an empty tree S and add the source to S
2. Repeat $|V|-1$ times:

- Add the node to S that's not yet in S and that's "nearest" to source

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a parent, initially NULL set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:

$$
\begin{array}{lr}
\text { if } u \in \mathrm{PQ} \text { and } d_{v}+w(v, u)<d_{u}: & \text { key: length of shortest path } \\
\quad \mathrm{PQ} . \operatorname{decrease} \operatorname{Key}\left(u, d_{v}+w(v, u)\right) & s \rightarrow u \text { using nodes in } \mathrm{PQ} \\
& u \text {. parent }=v
\end{array}
$$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Observe: shortest paths from a source forms a tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest path. (This is called the optimal substructure property.)

Dijkstra's Algorithm Running Time

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Initialization:

$$
O(|V|)
$$

$|V|$ iterations
$O(\log |V|)$
$|E|$ iterations total
?? $\quad O(\log |V|)$ if we use indirect heaps

Overall running time: $O(|V| \log |V|+|E| \log |V|)=O(|E| \log |V|)$

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Python-like Code for Dijkstra's Algorithm

def Dijkstras(graph, start, end):
distances $=[\infty, \infty, \infty, \ldots]$ \# one index per node done = [False,False,False,...] \# one index per node $P Q=$ priority queue \# e.g. a min heap PQ.insert((0, start))
distances[start] = 0
while $P Q$ is not empty:
current = PQ.extractmin()
if done[current]: continue done[current] = True
 for each neighbor of current:
if not done[neighbor]:
new_dist = distances[current]+weight(current,neighbor)
if new_dist < distances[neighbor]:
distances[neighbor] = new_dist PQ.insert((new_dist,neighbor))
return distances[end]

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	∞
5	∞
6	∞
7	∞
8	

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	T
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	18
5	∞
6	∞
7	∞
8	∞

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	T
2	T
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	15
4	18
5	13
6	∞
7	∞
8	∞

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	T
2	T
3	F
4	F
5	T
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	14
4	18
5	13
6	∞
7	20
8	∞

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_{u}=\delta(s, u)$ where $\delta(s, u)$ is the shortest distance

- Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G
- Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Graph Cuts

A cut of a graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

Notion extends naturally to a set of edges

An edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$

An edge $\left(v_{1}, v_{2}\right) \in E$ respects a cut if $v_{1}, v_{2} \in S$ or if $v_{1}, v_{2} \in V-S$

Correctness of Dijkstra's Algorithm

Inductive hypothesis: Suppose that nodes $v_{1}=s, \ldots, v_{i}$ have been removed from PQ , and for each of them $d_{v_{i}}=\delta\left(s, v_{i}\right)$, and there is a path from s to v_{i} with distance $d_{v_{i}}$ (whenever $d_{v_{i}}<\infty$)

Base case:

- $i=0: v_{1}=s$
- Claim holds trivially

Correctness of Dijkstra's Algorithm: Claim 1

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G

Proof:

- \quad Suppose $d_{u}<\infty$
- This means that PQ. decreaseKey was invoked on node u on an earlier iteration
- Consider the last time PQ. decreaseKey is invoked on node u
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_{u}=d_{v}+w(v, u)$
- By the inductive hypothesis, there is a path $s \rightarrow v$ of length d_{v} in G and since there is an edge $(v, u) \in E$, there is a path $s \rightarrow u$ of length d_{u} in G

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

> Extracted nodes "cuts" G into two subsets, $(S, V-S)$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into ($S, V-S$)
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
& w(s, \ldots, u) \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& w(s, \ldots, u)=w(s, \ldots, x)+w(x, y)+w(y, \ldots, u) \\
& w(s, \ldots, x) \geq \delta(s, x) \text { since } \delta(s, x) \text { is weight of } \\
& \text { shortest path from } s \text { to } x
\end{aligned}
$$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u)
\end{aligned}
$$

Inductive hypothesis: since x was extracted before, $d_{x}=\delta(s, x)$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into ($S, V-S$)
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u)
\end{aligned}
$$

By construction of Dijkstra's algorithm, when x is extracted, d_{y} is updated to satisfy

$$
d_{y} \leq d_{x}+w(x, y)
$$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u) \\
& \geq d_{u}+w(y, \ldots, u)
\end{aligned}
$$

Greedy choice property: we always extract the node of minimal distance so $d_{u} \leq d_{y}$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u) \\
& \geq d_{u}+w(y, \ldots, u) \\
& \geq d_{u}
\end{aligned}
$$

Correctness of Dijkstra's Algorithm

Conclusion: We used proof by induction to show:

When node u is removed from the priority queue, $d_{u}=\delta(s, u)$

- Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G
- Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

In other words, all paths (s, \ldots, u) are no shorter than d_{u} which makes it the shortest path (or one of equally shortest paths).

Divide and Conquer, Recurrences

Question

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

Tromino

Trominoes

What about larger boards?

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three quadrants without the missing piece

Trominoes Puzzle Solution

Place a tromino to occupy the three quadrants without the missing piece

Trominoes Puzzle Solution

Observe: Each quadrant is now a smaller subproblem!

Trominoes Puzzle Solution

Solve Recursively

Trominoes Puzzle Solution

Solve Recursively

Trominoes Puzzle Solution

Our first algorithmic technique!

Divide and Conquer

[CLRS Chapter 4]

Divide:

- Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)

Combine:

- Merge solutions to subproblems to obtain solution for original problem

,
When is this an effective strategy?

Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: $D(n)$ time
Conquer: Recurse on smaller problems of size s_{1}, \ldots, s_{k}
Combine: $C(n)$ time

Recurrence:

- $T(n)=D(n)+\sum_{i \in[k]} T\left(s_{i}\right)+C(n)$

Recurrence Solving Techniques

Tree
 get a picture of recursion

Guess/Check
guess and use induction to prove
"Cookbook"
MAGIC!

Substitution

substitute in to simplify

Merge Sort

Divide:

- Break n-element list into two lists of $n / 2$ elements

Conquer:

- If $n>1$:
- Sort each sublist recursively
- If $n=1$:
- List is already sorted (base case)

Combine:

- Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list Inputs:

- 2 sorted lists $\left(L_{1}, L_{2}\right)$
- 1 output list ($L_{\text {out }}$)

While (L_{1} and L_{2} not empty):
If $L_{1}[0] \leq L_{2}[0]:$
$L_{\text {out }}$.append($\left.L_{1} \cdot \operatorname{pop}()\right)$
Else:

$$
L_{\text {out }} \cdot \operatorname{append}\left(L_{2} \cdot \operatorname{pop}()\right)
$$

$L_{\text {out }}$.append $\left(L_{1}\right)$
$L_{\text {out }}$.append $\left(L_{2}\right)$

Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: 0 comparisons
Conquer: recurse on 2 small problems, size $\frac{n}{2}$
Combine: n comparisons
Recurrence:

- $T(n)=2 T(n / 2)+n$

Recurrence Solving Techniques

Tree

? Guess/Check

"Cookbook"

Substitution

Tree Method

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Tree Method

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Number of subproblems

Tree Method

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

$$
\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array}
$$

Number of subproblems

Cost of subproblem

1n
$n / 2$
$n / 4$
2^{k}

$$
\frac{n}{2^{k}}=1
$$

Tree Method

3. Use asymptotic notation to simplify

$$
T(n)=2 T(n / 2)+n
$$

How many levels?
Problem size at $k^{\text {th }}$ level: $\frac{n}{2^{k}}$
Base case: $n=1$
At level k, it should be the case that $\frac{n}{2^{k}}=1$

$$
n=2^{k} \Rightarrow k=\log _{2} n
$$

Number of subproblems

1

Tree Method

3. Use asymptotic notation to simplify

$$
T(n)=2 T(n / 2)+n
$$

$$
k=\log _{2} n
$$

Number of subproblems

1 2

Cost at level $i: \quad 2^{i} \cdot \frac{n}{2^{i}}=n$
Total cost: $\begin{aligned} T(n)=\sum_{i=0}^{\log _{2} n} n=n \sum_{i=0}^{\log _{2} n} 1 & =n \log _{2} n \quad 2^{k} \quad \frac{n}{2^{k}}=1 \\ & =\Theta(n \log n)\end{aligned}$

Multiplication

Want to multiply large numbers together

4102 n-digit numbers
 $\times 1819$

How do we measure input size?
What do we "count" for run time?

number of digits

number of elementary operations (single-digit multiplications)

"Schoolbook" Multiplication

How many multiplications?

"Schoolbook" Multiplication

Can we do
How many multiplications?
better? 4102
$\times 1819$
n-digit numbers
36918 mults
What about cost
of additions?
$\Theta\left(n^{2}\right)$
4102
n mults
n levels
32816
$+4102$
7461538

Divide and Conquer Multiplication

1. Break into smaller subproblems

$$
\begin{aligned}
& a b=10^{\frac{n}{2}} a+b \\
& \times c d=10^{\frac{n}{2}} c+d \\
&=10^{n}(a \times c)+ \\
& 10^{\frac{n}{2}}(a \times d+b \times c)+ \\
&(b \times d)
\end{aligned}
$$

Divide and Conquer Multiplication

Divide:

- Break n-digit numbers into four numbers of $n / 2$ digits each (call them a, b, c, d)

Conquer:

- If $n>1$:
- Recursively compute $a c, a d, b c, b d$
- If $n=1$: (i.e. one digit each)
- Compute $a c, a d, b c, b d$ directly (base case)

Combine:

- $10^{n}(a c)+10^{n / 2}(a d+b c)+b d$

For simplicity, assume that $n=2^{k}$ is a power of 2

Divide and Conquer Multiplication

2. Use recurrence relation to express recursive running time

$$
10^{n}(a c)+10^{n / 2}(a d+b c)+b d
$$

Recursively solve

$$
T(n)
$$

Divide and Conquer Multiplication

2. Use recurrence relation to express recursive running time

$$
10^{n}(a c)+10^{n / 2}(a d+b c)+b d
$$

Recursively solve

$$
T(n)=4 T\left(\frac{n}{2}\right)
$$

Need to compute 4 multiplications, each of size $n / 2$

Divide and Conquer Multiplication

2. Use recurrence relation to express recursive running time

$$
10^{n}(a c)+10^{n / 2}(a d+b c)+b d
$$

Recursively solve

$$
T(n)=4 T\left(\frac{n}{2}\right)+5 n
$$

Need to compute 4 multiplications, each of size $n / 2$

2 shifts and 3 additions on n-bit values

Divide and Conquer Multiplication

3. Use asymptotic notation to simplify

$$
T(n)=4 T(n / 2)+5 n
$$

Number of Cost of subproblems subproblem

Divide and Conquer Multiplication

3. Use asymptotic notation to simplify

$$
T(n)=4 T(n / 2)+5 n
$$

How many levels?
Problem size at $k^{\text {th }}$ level: $\frac{n}{2^{k}}$
Base case: $n=1$
At level k, it should be the case that $\frac{n}{2^{k}}=1$

$$
n=2^{k} \Rightarrow k=\log _{2} n
$$

Divide and Conquer Multiplication

3. Use asymptotic notation to simplify

$$
T(n)=4 T(n / 2)+5 n
$$

$$
k=\log _{2} n
$$

Number of Cost of subproblems subproblem

Cost at level $i: \quad 4^{i} \cdot \frac{5 n}{2^{i}}=2^{i} \cdot 5 n$
Total cost: $T(n)=\sum_{i=0}^{\log _{2} n} 2^{i} \cdot 5 n=5 n \sum_{i=0}^{\log _{2} n} 2^{i}$
$\frac{5 n}{4}$

$$
4^{k} \quad \frac{5 n}{2^{k}}={ }_{69} 5
$$

Divide and Conquer Multiplication

3. Use asymptotic notation to simplify

$$
\begin{aligned}
T(n) & =4 T(n / 2)+5 n \\
& =5 n \sum_{i=0}^{\log _{2} n} 2^{i} \\
& =5 n \cdot \frac{2^{\log _{2} n+1}-1}{2-1} \\
& =5 n(2 n-1)=\Theta\left(n^{2}\right)
\end{aligned}
$$

$$
\sum_{i=0}^{L} a^{i}=\frac{a^{L+1}-1}{a-1}
$$

No better than the schoolbook method!

Divide and Conquer Multiplication

3. Use asymptotic notation to simplify

$$
\begin{aligned}
T(n) & =4 T(n / 2)+5 n \\
& =5 n \sum_{i=0}^{\log _{2} n} 2^{i} \\
& =5 n \cdot \frac{2^{\log _{2} n+1}-1}{2-1} \\
& =5 n(2 n-1)=\Theta\left(n^{2}\right)
\end{aligned}
$$

$$
\sum_{i=0}^{L} a^{i}=\frac{a^{L+1}-1}{a-1}
$$

Is there a $o\left(n^{2}\right)$ algorithm for multiplication?

