
CS 3100
Data Structures and Algorithms 2
Lecture 6: Dijkstra’s Shortest Path Algorithm

Co-instructors:  Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Section 22.3



Announcements

• Upcoming dates
• PS1 due Sept 8 (Friday) at 11:59pm
• PA1 due Sept 17 (Sunday) at 11:59pm

• Office Hours
• Prof Hott: 3-5pm Monday, 4-5pm Thursday
• Prof Horton: 2-3:30 Mon, 3:30-5 Tue, 2:30-4 Thu, 2-3 Fri
• TA office hours posted online

• Extension request form now available (on course website)
• Course email (comes to both professors and head TAs):

  cs3100@cshelpdesk.atlassian.net
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Tuesday, Sept 12 at 11:59pm



Single-Source Shortest Path Problem
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Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉, 
 for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for this unit): all edge weights are positive
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Dijkstra’s Algorithm

Input: graph with no negative edge weights, start node 𝑠, end node 𝑡
Behavior: Start with node 𝑠, repeatedly go to the incomplete node 
“nearest” to 𝑠, stop when 
Output: 
• Distance from start to end
• Distance from start to every node
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1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:
• At each step, add the node “nearest” to the source not yet in 𝑆 to 𝑆

Dijkstra’s Algorithm
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Data Structure to Store Nodes

The strategy: At every step, choose node not in S that’s closest to source
To do this efficiently, we need a data structure that:

• Stores a set of (node, distance) pairs
• Allows efficient removal of the pair with smallest distance
• Allows efficient additions and updates

This is the Priority Queue ADT (Abstract Data Type)!
Remember the binary heap data structure?
 We’ll need a min-heap (node with smallest priority at the root)



Review: Storing a Heap in an Array
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:-1 C:4 D:6 B:5 E:9 A:8 F:9Min-heap 
stored in array

Store the elements in a one-dimensional array in strict
     left-to-right, level order 
That is, we store all of the nodes on the tree’s level i from
     left to right before storing the nodes on level i + 1. 
• Usually we ignore index position 0
• Simple formulas to find children, siblings,…
• 2i: left child, 2i+1: right child
• floor(i/2): parent

Must store the key (priority) value, and maybe
     other info (e.g. node ID)

0 1 2 3 4 5 6



Review: Heap Operations

extractMin()      perhaps called poll() in CS 2100
• Returns and removes the item with the min key (e.g. the heap’s root)
• Move last item to root and “bubble it down” to correct location
• Complexity:  O(log n)

insert(item, key)       perhaps called push() in CS 2100
• Add new item at end of array and “bubble it up” to correct location
• Complexity:  O(log n)

decreaseKey(item, newKey)    not covered in CS 2100!
• Find item in min-heap, decrease its key, and “bubble it up” to correct location
• Complexity:  uh oh!  Can we find item quickly, i.e. in O(log n)?
• Could sequential search the array.  Then complexity is O(n)
• We can do this in O(log n) if we use indirect heaps (details later)  



Dijkstra’s Algorithm Implementation
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1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:
• Add the node to 𝑆	that’s not yet in 𝑆 and that’s “nearest” to source

Implementation:
initialize 𝑑) = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑) as the key
set 𝑑* = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑) +𝑤 𝑣, 𝑢 < 𝑑+:
   PQ. decreaseKey 𝑢, 𝑑) +𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: length of shortest path 
𝑠 → 𝑢 using nodes in PQ



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation
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Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

13

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Observe: shortest paths from a source forms a 
tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest 
path. (This is called the optimal substructure property.)

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Dijkstra’s Algorithm Running Time

22

𝑂 𝑉
Initialization:

𝑉  iterations
𝑂 log 𝑉
𝐸  iterations total

? ? 	 𝑂 log 𝑉  if we use 
indirect heaps

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉
       or, 𝑂 𝑚 log 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 



Python-like Code for Dijkstra’s Algorithm
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def Dijkstras(graph, start, end):
 distances = [∞, ∞, ∞,…]  # one index per node
 done = [False,False,False,…]  # one index per node
 PQ = priority queue  # e.g. a min heap
 PQ.insert((0, start))
 distances[start] = 0
 while 𝑃𝑄 is not empty:
  current = PQ.extractmin()
  if done[current]: continue
  done[current] = True
  for each neighbor of current:
   if not done[neighbor]:
    new_dist = distances[current]+weight(current,neighbor)
    if new_dist < distances[neighbor]:
     distances[neighbor] = new_dist
     PQ.insert((new_dist,neighbor))
 return distances[end]
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Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the 
priority queue, 𝑑K = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance
• Claim 1: There is a path of length 𝑑+ (as long as 𝑑+ < ∞) from 𝑠 to 𝑢 in 𝐺
• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑+

30



Graph Cuts

31

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣L, 𝑣M ∈ 𝐸 crosses a 
cut if 𝑣L ∈ 𝑆 and 𝑣M ∈ 𝑉 − 𝑆

An edge 𝑣L, 𝑣M ∈ 𝐸 respects a cut 
if 𝑣L, 𝑣M ∈ 𝑆 or if 𝑣L, 𝑣M ∈ 𝑉 − 𝑆
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Notion extends naturally 
to a set of edges



Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣L = 𝑠,… , 𝑣N  have been 
removed from PQ, and for each of them 𝑑O! = 𝛿(𝑠, 𝑣N), and there is a 
path from 𝑠 to 𝑣N  with distance 𝑑O! (whenever 𝑑O! < ∞)

Base case:
• 𝑖 = 0:	𝑣, = 𝑠
• Claim holds trivially

32



Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 PQ node extracted
Claim 1: There is a path of length 𝑑K (as long as 𝑑K < ∞) from 𝑠 to 𝑢 in 𝐺
Proof:

• Suppose 𝑑+ < ∞
• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier 

iteration
• Consider the last time PQ. decreaseKey is invoked on node 𝑢
• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and 

node 𝑣 was extracted from PQ in a previous iteration
• In this case, 𝑑+ = 𝑑- +𝑤 𝑣, 𝑢
• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑- in 𝐺 and since 

there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑+ in 𝐺
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 PQ node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑K	
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extracted nodes

𝑠
𝑢

Extracted nodes “cuts” G into 
two	subsets, (𝑆, 𝑉 − 𝑆)

𝑆
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extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut

𝑤 𝑠,… , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠,… , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of 
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢  
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)
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𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)
= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted 
before, 𝑑! = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)
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≥ 𝑑" + 𝑤(𝑦,… , 𝑢)
= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is 
extracted, 𝑑" is updated to satisfy

𝑑" ≤ 𝑑! + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑" + 𝑤(𝑦,… , 𝑢)
≥ 𝑑# + 𝑤(𝑦,… , 𝑢)

= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the 
node of minimal distance so 𝑑# ≤ 𝑑"

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑" + 𝑤(𝑦,… , 𝑢)
≥ 𝑑# + 𝑤(𝑦,… , 𝑢)
≥ 𝑑#

= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm

Conclusion:  We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑K = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑+ (as long as 𝑑+ < ∞) from 𝑠 to 𝑢 in 𝐺
• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑+

In other words, all paths 𝑠, … , 𝑢  are no shorter than 𝑑K
which makes it the shortest path (or one of equally shortest paths).
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Indirect Heaps



The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of indirection:
• Simple example: an implementation of FindMax(anArray) that returns the 

array index of the max value instead of the value itself
• Pointers in languages like C and C++
• Object references in Java and Python
• A short read: https://en.wikipedia.org/wiki/Indirection

Indirect heaps:
• The idea: have some kind of “index” that, given a node’s “ID”,  you can quickly 

find where that node is in the heap’s tree
• Several ways to implement these
• What’s shown in the next slides works well if you identify nodes with strings 

and you can easily use a good hashtable (dictionary)

https://en.wikipedia.org/wiki/Indirection


Indirect Heap Uses >1 Data Structure 
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:-1 C:4 D:6 B:5 E:9 A:8 F:9

Example usage:
• What’s the item at the root? item_at_posn[1] à ‘C’
• Where in the tree is E?  posn_of_item[‘E’] à 4
• What item is E’s parent?

   item_at_posn[ posn_of_item[‘E’]/2 ] = item_at_posn[2] à ‘D’ 
There will be some way of getting the PQ key value from the item, which 
we’ll show as item.key. E.g. the min key is  item_at_posn[1].key à 4

0 1 2 3 4 5 6item_at_posn[i] – an array that 
tells us what item is stored at 
the position i in the tree

5 3 1 2 4 6
A B C D E Fposn_of_item[item] – a hashtable 

that gives the position in the tree 
where a given item ID is stored



Is decreaseKey more efficient now?
This code shows the idea: decrease B’s key and bubble it up one level:

item = ‘B’
item.key = 3 # it was 5
itemPosn = posn_of_item[item]   # 3
parentPosn = itemPosn / 2    # 1
parent = item_at_posn[parentPosn] # 'C'

if item.key < parent.key:  # need to swap?
   item_at_posn[parentPosn] = item    # item_at_posn[1] = 'B'
   item_at_posn[itemPosn] = parent    # item_at_posn[3] = 'C'
   posn_of_item[parent] = itemPosn    # posn_of_item['C'] = 3
   posn_of_item[item] = parentPosn    # posn_of_item['B'] = 1

Assuming hashtable lookup
   is O(1), everything here is O(1).
decreaseKey() might have to do
   this for the height of the tree,
   so O(log n) overall.


