CS 3100

Data Structures and Algorithms 2
Lecture 6: Dijkstra’s Shortest Path Algorithm

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4t edition:
* Section 22.3



Announcements

 Upcoming dates

e PS1 due SeimSuftimibmyppmdaimnamer Tuesday, Sept 12 at 11:59pm
e PA1 due Sept 17 (Sunday) at 11:59pm

e Office Hours
* Prof Hott: 3-5pm Monday, 4-5pm Thursday
* Prof Horton: 2-3:30 Mon, 3:30-5 Tue, 2:30-4 Thu, 2-3 Fri
* TA office hours posted online

e Extension request form now available (on course website)
* Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net



Single-Source Shortest Path Problem

UNIVERSITY
OB UTAH

Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph ¢ = (V, E) and a start node (i.e., source) s € V,

for each v € V find the minimum-weight path from s — v (call this weight § (s, v))
Assumption (for this unit): all edge weights are positive




Dijkstra’s Algorithm

Input: graph with no negative edge weights, start node s, end node t

Behavior: Start with node s, repeatedly go to the incomplete node
“nearest” to s, stop when

Output:
e Distance from start to end 8
. 10 @ @ 6
* Distance from start to every node @
7
L0 9 2
(3) > 9 0O
12 3
@ 1
11



Dijkstra’s Algorithm

1. Start with an empty tree S and add the source to S
2. Repeat |[V]| — 1 times:
At each step, add the node “nearest” to the source notyetinSto S

Initially: At some point later:




Data Structure to Store Nodes

The strategy: At every step, choose node not in S that’s closest to source

To do this efficiently, we need a data structure that:

 Stores a set of (node, distance) pairs
* Allows efficient removal of the pair with smallest distance

* Allows efficient additions and updates

This is the Priority Queue ADT (Abstract Data Type)!
Remember the binary heap data structure?
We'll need a min-heap (node with smallest priority at the root)



Review: Storing a Heap in an Array

@ Min-heap
stored in array .
@ @ Must store the key (priority) value, and maybe

other info (e.g. node ID)

@ @ @ Store the elements in a one-dimensional array in strict
left-to-right, level order

That is, we store all of the nodes on the tree’s level i from
left to right before storing the nodes on level i + 1.

» Usually we ignore index position O

» Simple formulas to find children, siblings,...
«21: left child, 2i+1: right child
* floor(i/2): parent




Review: Heap Operations

extractMin() perhaps called poll() in CS 2100
 Returns and removes the item with the min key (e.g. the heap’s root)
 Move last item to root and “bubble it down” to correct location

« Complexity: O(log n)
insert(item, key)  perhaps called push() in CS 2100
« Add new item at end of array and “bubble it up” to correct location
« Complexity: O(log n)
decreaseKey(item, newKey) not covered in CS 2100!
 Find item in min-heap, decrease its key, and “bubble it up” to correct location
« Complexity: uh oh! Can we find item quickly, i.e. in O(log n)?

 Could sequential search the array. Then complexity is O(n)
« We can do this in O(log n) if we use indirect heaps (details later)



Dijkstra’s Algorithm Implementation

1. Start with an empty tree S and add the source to S

2. Repeat |V| — 1 times:
 Addthe node to S that’s not yet in S and that’s “nearest” to source

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandd, + w(v,u) < d,: key: length of shortest path
PQ. decreaseKey(u, + w(v, u)) $ = u using nodes in PQ

u.parent = v

9



Dijkstra’s Algorithm Implementation

Implementation:
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Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E: 3
ifuePQandd, +w(v,u) <d,: 10
PQ. decreaseKey(u, d, +w(v, u))
u.parent = v

Observe: shortest paths from a source forms a
tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest

path. (This is called the optimal substructure property.)

21



Dijkstra’s Algorithm Running Time

Implementation:

initialize d,, = oo for each node v Initialization:
add all nodes v € I to the priority queue PQ, using d,, as the key o(lv)
setd. =0
while PQ is not empty: |V | iterations
v = PQ. extractMin() 0(log|V])
for each u € V such that (v,u) € E: |E| iterations total
ifuePQandd, +w(v,u) <d,: -
PQ. decreaseKey(u, d, + w(v, u)) 7?7 0(logl|V]) if we use
u.parent = v indirect heaps
V]=n
L |E| = m
Overall running time: O(|V|log|V| + |E|log|V|) = O(|E|log|V]|)

or, 0(mlogn)

22



Python-like Code for Dijkstra’s Algorithm

def Dijkstras(graph, start, end):
distances = [0, o0, 00,...] # one index per node
done = [False,False,False,...] # one index per node @ 8 @
PQ = priority queue # e.g.a min heap &
PQ.insert((0, start)) lo ) (7)
distances|[start] =0
while PQ is not empty: >,
current = PQ.extractmin() @ 3
if done[current]: continue @ 11
done[current] = True 1 @ 7
for each neighbor of current:
if not done[neighbor]:
new_dist = distances[current]+weight(current,neighbor)
if new_dist < distances[neighbor]:
distances[neighbor] = new_dist
PQ.insert((new_dist,neighbor))

return distances[end] 23



Dijkstra’s Algorithm

Start: O :
ldea: When a node is the closest
End: 8 . .
undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 F 0 0
1 2 1 * 1o AD—E—() .
2 F 2 00 @
Y/
3 F 3 = 0O . © : 2
4 F 4 00 9 O
5 F 5 00 12 @ 3 .
6 F 6 0 11
7 F 7 0 1 @ 7 @
8 F 8 00
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Dijkstra’s Algorithm

Start: O :
ldea: When a node is the closest
End: 8 , _
undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 F 1 10 1o AD=E—() i
2 F 2 12 : )
3 F 3 00 9 2
4 F 4 oo (3) ’ 9 )
5 F 5 00 12 @ 3 .
6 F 6 00 11
7 F 7 0 1 @ 7 @
8 F 8 00

25



Dijkstra’s Algorithm

Etadrjc.go Idea: When a node is the closest
nes undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 T 1 10 o ADE—(1) i
2 F 2 12 v @
3 : 3 = O © : 2
4 F 4 18 ’ O
5 F 5 00 12 @ 3 .
6 F 6 00 11
7 F 7 00 1 (5 7 ©)
8 F 8 00
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Dijkstra’s Algorithm

Etadrjc.go Idea: When a node is the closest
nes undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 15 2
4 F 4 18 )
5 F 5 13
6 F 6 00 11
7 F 7 00
8 F 8 00
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Dijkstra’s Algorithm

Etadrjc.go Idea: When a node is the closest
nes undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 14 2
4 F 4 18 )
5 T 5 13
6 F 6 00 11
7 F 7 20
8 F 8 00

28



Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()

for each u € V such that (v,u) € E: 3
ifuePQandd, +w(v,u) <dy,: 10
PQ. decreaseKey(u, d, +w(v, u)) -
Uu. pal‘ent =P e 9 @ 2
5
9 o
12 3
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the

priority queue, d,, = 0(s,u) where 6 (s, u) is the shortest distance
* Claim 1: There is a path of length d,, (as longas d,, < o) fromstouinG
* Claim 2: For every path (s, ..., u), w(s, ...,u) = dy

30



Graph Cuts

A cut of a graph G = (V, E) is a partition of the
nodes into two sets, Sand I/ — S

Notion extends naturally
to a set of edges
An edge (v,,v,) € E crosses a An edge (v,,1,) € E respects a cut
cutifvyeSandv, eV —-3S ifv,v, €Sorifv,v, eV —-3S

31



Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes v; = s, ..., v; have been
removed from PQ, and for each of them d,,, = 8(s, v;), and there is a

path from s to v; with distance d,,, (whenever d,,, < )

Base case:
i =0:v1 =5
e Claim holds trivially

32



Correctness of Dijkstra’s Algorithm: Claim 1

Let u be the (i + 1)5! node extracted

Claim 1: There is a path of length d,, (aslongas d,, < o) fromstouinG

Proof:
* Supposed, < ©

* This means that PQ. decreaseKey was invoked on node u on an earlier
iteration

* Consider the last time PQ. decreaseKey is invoked on node u

* PQ.decreaseKey is only invoked when there exists an edge (v,u) € E and
node v was extracted from PQ in a previous iteration

* Inthiscase, d, =d, + w(v,u)

* By the inductive hypothesis, there is a path s = v of length d,, in G and since
there is an edge (v,u) € E, there is a path s - u of length d, in G

33



Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes “cuts” G into
two subsets, (S5,V — 5)

extracted nodes

34



Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes “cuts” Ginto (§,V — )
Take any path (s, ..., 1)

‘ Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x)+w(x,y)+w(y,..,u)

w(s, ...,u) =w(s,..,x) +wlx,y) + w(y, ..., u)

w(s,...,x) = 6(s,x) since §(s, x) is weight of
shortest path from s to x

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes “cuts” Ginto (§,V — )
Take any path (s, ..., 1)

‘ Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x)+w(x,y)+w(y,..,u)
= d,+w(xy)+w(y,..,u

Inductive hypothesis: since x was extracted
before, d,, = 6(s,x)

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes “cuts” Ginto (§,V — )
Take any path (s, ..., 1)

Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s, ..., u) 5(s,x) +w(x,y) + w(y, ..., u)
d, +w(x,y) +w(y, ..., u)

= dy + w(y, ..., u)

By construction of Dijkstra’s algorithm, when x is
extracted, d,, is updated to satisfy
d, <d,+w(ky)

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes “cuts” Ginto (§,V — )
Take any path (s, ..., 1)

Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s, ..., u) 5(s,x) +w(x,y) + w(y, ..., u)
d, +w(x,y) +w(y, ..., u)
d, + w(y, ..., u)

d, +w(y,..,u)

VALY,

extracted nodes Greedy choice property: we always extract the

node of minimal distance so d,, < d,,
38



Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes “cuts” Ginto (§,V — )

Take any path (s, ..., 1)
‘ Sinceu € S, (s, ..., 1) crosses the cut somewhere
S ‘ * Let (x,y) be last edge in the path that crosses
the cut
‘ w(s,..,u) = 6(s,x)+w(x,y)+w(y,..,u)
= dy+w(x,y)+w(y, .., u)
= d, +w(,..,u)
> d,+w(y,..,u)
>
extracted nodes "

All edge weights assumed to be positive39



Correctness of Dijkstra’s Algorithm

Conclusion: We used proof by induction to show:

When node u is removed from the priority queue, d,, = 6 (s, u)
* Claim 1: There is a path of length d,, (as longas d,, < o) fromstouinG
* Claim 2: For every path (s, ...,u), w(s, ...,u) = dy

In other words, all paths (s, ..., u) are no shorter than d,

which makes it the shortest path (or one of equally shortest paths).
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Indirect Heaps



The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of indirection:

* Simple example: an implementation of FindMax(anArray) that returns the
array index of the max value instead of the value itself

* Pointers in languages like C and C++
* Object references in Java and Python
e Ashortread: https://en.wikipedia.org/wiki/Indirection

Indirect heaps:

* The idea: have some kind of “index” that, given a node’s “ID”, you can quickly
find where that node is in the heap’s tree

 Several ways to implement these

 What’s shown in the next slides works well if you identify nodes with strings
and you can easily use a good hashtable (dictionary)


https://en.wikipedia.org/wiki/Indirection

Indirect Heap Uses >1 Data Structure

item_at_posn[i] —an array that 0 1 5 3 4 5 6
tells us what item is stored at
the position i in the tree

posn_of_item[item] — a hashtable A B C D E E
that gives the position in the tree
where a given item ID is stored

Example usage:
* What's the item at the root? item_at_posn[1] = ‘C’ @
 Whereinthe treeis E? posn_of item[‘E’] =2 4

* What item is E’s parent? @ @

item_at_posn[ posn_of_item[‘E’]/2 ] = item_at_posn[2] = ‘D’

There will be some way of getting the PQ key value from the item, which
we’ll show as item.key. E.g. the min key is item_at_posn[1].key = 4 @ ® ®
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Is decreaseKey more efficient now?

This code shows the idea: decrease B’s key and bubble it up one level:
item = ‘B’
item.key = 3 # it was 5
itemPosn = posn of item[item] # 3
parentPosn = itemPosn / 2 # 1
parent = item at posn[parentPosn] # 'C'

Assuming hashtable lookup
is O(1), everything here is O(1).

decreaseKey() might have to do
this for the height of the tree,
so O(log n) overall.

if item.key < parent.key: # need to swap?

item at posn[parentPosn] = item # item at posn[1l] = 'B'
item at posn[itemPosn] = parent # item at posn[3] = 'C'
posn_of item[parent] = itemPosn # posn_of item['C'] = 3
posn of item[item] = parentPosn # posn _of item['B'] =1




