CS 3100 Data Structures and Algorithms 2 Lecture 6: Dijkstra's Shortest Path Algorithm

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS 4th edition:

• Section 22.3

Announcements

- Upcoming dates
 - PS1 due Sept 8 (Friday) at 11.59pm Tuesday, Sept 12 at 11:59pm
 - PA1 due Sept 17 (Sunday) at 11:59pm
- Office Hours
 - Prof Hott: 3-5pm Monday, 4-5pm Thursday
 - Prof Horton: 2-3:30 Mon, 3:30-5 Tue, 2:30-4 Thu, 2-3 Fri
 - TA office hours posted online
- Extension request form now available (on course website)
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Single-Source Shortest Path Problem

Find the <u>shortest path</u> based on sum of edge-weights from UVA to each of these other places. **The problem:** Given a graph G = (V, E) and a start node (i.e., source) $s \in V$,

for each $v \in V$ find the minimum-weight path from $s \to v$ (call this weight $\delta(s, v)$) Assumption (for this unit): all edge weights are positive

Input: graph with **no negative edge weights**, start node *s*, end node *t*

Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when

Output:

- Distance from start to end
- Distance from start to every node

- 1. Start with an empty tree *S* and add the source to *S*
- 2. Repeat |V| 1 times:
 - At each step, add the node "nearest" to the source not yet in S to S

Data Structure to Store Nodes

The strategy: At every step, choose node not in *S* that's closest to source

To do this efficiently, we need a data structure that:

- Stores a set of (node, distance) pairs
- Allows efficient removal of the pair with smallest distance
- Allows efficient additions and updates

This is the **Priority Queue** ADT (Abstract Data Type)! Remember the **binary heap** data structure? We'll need a **min-heap** (node with smallest priority at the root)

Review: Storing a Heap in an Array

Min-heap stored in array

C:4

B:5

F:9

D:6

E:9

A:8

	0	1	2	3	4	5	6
•	:-1	C:4	D:6	B:5	E:9	A:8	F:9

Must store the key (priority) value, and maybe other info (e.g. node ID)

Store the elements in a one-dimensional array in strict left-to-right, level order

That is, we store all of the nodes on the tree's level *i* from left to right before storing the nodes on level *i* + 1.

- Usually we ignore index position 0
- Simple formulas to find children, siblings,...
 - 2i: left child, 2i+1: right child
 - floor(i/2): parent

Review: Heap Operations

extractMin() perhaps called poll() in CS 2100

- Returns and removes the item with the min key (e.g. the heap's root)
- Move last item to root and "bubble it down" to correct location
- Complexity: O(log n)

insert(item, key) perhaps called push() in CS 2100

- Add new item at end of array and "bubble it up" to correct location
- Complexity: O(log n)

decreaseKey(item, newKey) not covered in CS 2100!

- Find item in min-heap, decrease its key, and "bubble it up" to correct location
- Complexity: uh oh! Can we find item quickly, i.e. in O(log n)?
- Could sequential search the array. Then complexity is O(n)
- We can do this in O(log n) if we use indirect heaps (details later)

- 1. Start with an empty tree *S* and add the source to *S*
- 2. Repeat |V| 1 times:
 - Add the node to *S* that's not yet in *S* and that's "nearest" to source

Implementation:

initialize $d_v = \infty$ for each node vadd all nodes $v \in V$ to the priority queue PQ, using d_v as the key set $d_s = 0$ while PQ is not empty: v = PQ. extractMin() for each $u \in V$ such that $(v, u) \in E$: if $u \in PQ$ and $d_v + w(v, u) < d_u$: PQ. decreaseKey $(u, d_v + w(v, u))$ u. parent = v

each node also maintains a parent, initially NULL

key: length of shortest path $s \rightarrow u$ using nodes in PQ

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ.extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                          8
               if u \in PQ and d_v + w(v, u) < d_u:
                                                                                 \infty
                                                                                                  \infty
                                                                       10
                                                                                                        8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                             \infty
                         u.parent = v
                                                                            9
                                                                                                    5
                                                                                       \infty
                                                                                                          9
                                                                                                                       \infty
                                                                   12
                                                                                   3
                                                                                           3
                                                                          \infty
                                                                                                                   11
                                                                                                 6
                                                                                         \infty
                                                                                                                  10
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ.extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                         8
               if u \in PQ and d_v + w(v, u) < d_u:
                                                                                                 \infty
                                                                      10
                                                                                                       8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                            \infty
                         u.parent = v
                                                                           9
                                                                                                   5
                                                                                      \infty
                                                                                                         9
                                                                                                                      \infty
                                                                  12
                                                                                  3
                                                                                          3
                                                                         \infty
                                                                                                                  11
                                                                                                6
                                                                                        \infty
                                                                                                                11
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ.extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                        8
               if u \in PQ and d_v + w(v, u) < d_u:
                                                                                                \infty
                                                                     10
                                                                                                      8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                           \infty
                        u.parent = v
                                                                           9
                                                                                                  5
                                                                                     \infty
                                                                                                        9
                                                                                                                     \infty
                                                                  17
                                                                                 3
                                                                                         3
                                                                                                                 11
                                                                                               6
                                                                                       \infty
                                                                                                               12
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ.extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                        8
               if u \in PQ and d_v + w(v, u) < d_u:
                                                                                                \infty
                                                                     10
                                                                                                      8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                           \infty
                        u.parent = v
                                                                           9
                                                                                                  5
                                                                                     \infty
                                                                                                        9
                                                                                                                     \infty
                                                                  17
                                                                                 3
                                                                                         3
                                                                                                                 11
                                                                                               6
                                                                                       \infty
                                                                                                               13
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ.extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                       8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                                              18
                                                                    10
                                                                                                     8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                          \infty
                        u.parent = v
                                                                          9
                                                                                                5
                                                                                    \infty
                                                                                                      9
                                                                                                                   \infty
                                                                 17
                                                                                3
                                                                                        3
                                                                                                               11
                                                                                              6
                                                                                      \infty
                                                                                                              14
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                     8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                                            18
                                                                  10
                                                                                                  8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                       \infty
                       u.parent = v
                                                                        9
                                                                                              5
                                                                                  15
                                                                                                    9
                                                                                                                \infty
                                                               17
                                                                                      3
                                                                                                            11
                                                                                           6
                                                                                                           15
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                     8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                                            18
                                                                   10
                                                                                                  8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                       \infty
                        u.parent = v
                                                                        9
                                                                                              5
                                                                                  15
                                                                                                    9
                                                                                                                 \infty
                                                               17
                                                                                      3
                                                                                                             11
                                                                                            6
                                                                                                           16
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                     8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                                            18
                                                                   10
                                                                                                  8
                        PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                       \infty
                       u.parent = v
                                                                        9
                                                                                              5
                                                                                                    9
                                                                                                                \infty
                                                               17
                                                                                      3
                                                                                                            11
                                                                                            6
                                                                                                           17
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                    8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                  10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u.parent = v
                                                                       9
                                                                                             5
                                                                                                  9
                                                                                                               \infty
                                                              17
                                                                                     3
                                                                                                           11
                                                                                           6
                                                                                                          18
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                   8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                 10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u.parent = v
                                                                      9
                                                                                           5
                                                                                                 9
                                                             17
                                                                                   3
                                                                                         6
                                                                                                        19
```

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ.extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                  8
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                 10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u.parent = v
                                                                      9
                                                                                           5
                                                                                                 9
                                                             17
                                                                                   3
                                                                                                         11
                                                                                         h
                                                                                                        20
```

Implementation:

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
v = PQ. extractMin()
for each u \in V such that (v, u) \in E:
if u \in PQ and d_v + w(v, u) < d_u:
PQ. decreaseKey(u, d_v + w(v, u))
u. parent = v
```

Observe: shortest paths from a source forms a <u>tree</u>, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest path. (This is called the *optimal substructure property*.)

Dijkstra's Algorithm Running Time

Implementation:

initialize $d_v = \infty$ for each node v	Initialization:
add all nodes $v \in V$ to the priority queue PQ, using d_v as the key	O(V)
set $d_s = 0$	
while PQ is not empty:	V iterations
v = PQ.extractMin()	$O(\log V)$
for each $u \in V$ such that $(v, u) \in E$:	E iterations total
if $u \in PQ$ and $d_v + w(v, u) < d_u$:	
PQ. decreaseKey $(u, d_v + w(v, u))$?? $O(\log V)$ if we use
u. parent = v	indirect heaps

$$|V| = n$$
$$|E| = m$$

Overall running time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$ or, $O(m \log n)$

Python-like Code for Dijkstra's Algorithm

def Dijkstras(graph, start, end):

distances = $[\infty, \infty, \infty, ...]$ # one index per node done = [False,False,False,...] # one index per node 10 PQ = priority queue # e.g. a min heap PQ.insert((0, start)) distances[start] = 0 while PQ is not empty: current = PQ.extractmin() 2 if done[current]: continue done[current] = True for each neighbor of current: if not done[neighbor]: new_dist = distances[current]+weight(current,neighbor) if new dist < distances[neighbor]: distances[neighbor] = new_dist PQ.insert((new_dist,neighbor))

return distances[end]

Start: 0 End: 8

Node	Done?	Node	Distance
0	F	0	0
1	F	1	∞
2	F	2	∞
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	F	2	12
3	F	3	∞
4	F	4	18
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	15
4	F	4	18
5	F	5	13
6	F	6	∞
7	F	7	∞
8	F	8	∞

Start: 0 End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	14
4	F	4	18
5	Т	5	13
6	F	6	∞
7	F	7	20
8	F	8	∞


```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
     v = PQ.extractMin()
     for each u \in V such that (v, u) \in E:
                                                                                          8
               if u \in PQ and d_v + w(v, u) < d_u:
                                                                                 \infty
                                                                                                  \infty
                                                                       10
                                                                                                        8
                         PQ. decreaseKey(u, d_v + w(v, u))
                                                                                                             \infty
                         u.parent = v
                                                                            9
                                                                                                    5
                                                                                       \infty
                                                                                                          9
                                                                                                                       \infty
                                                                   12
                                                                                   3
                                                                                           3
                                                                          \infty
                                                                                                                   11
                                                                                                 6
                                                                                         \infty
                                                                                                                  29
```

Dijkstra's Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_u = \delta(s, u)$ where $\delta(s, u)$ is the shortest distance

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

Graph Cuts

Inductive hypothesis: Suppose that nodes $v_1 = s, ..., v_i$ have been removed from PQ, and for each of them $d_{v_i} = \delta(s, v_i)$, and there is a path from s to v_i with distance d_{v_i} (whenever $d_{v_i} < \infty$)

Base case:

- $i = 0: v_1 = s$
- Claim holds trivially

Let u be the $(i + 1)^{st}$ node extracted

Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G **Proof:**

- Suppose $d_u < \infty$
- This means that PQ. decreaseKey was invoked on node u on an earlier iteration
- Consider the last time PQ. decreaseKey is invoked on node *u*
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_u = d_v + w(v, u)$
- By the inductive hypothesis, there is a path $s \to v$ of length d_v in G and since there is an edge $(v, u) \in E$, there is a path $s \to u$ of length d_u in G

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into two subsets, (S, V - S)

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

 $w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$

w(s, ..., u) = w(s, ..., x) + w(x, y) + w(y, ..., u) $w(s, ..., x) \ge \delta(s, x) \text{ since } \delta(s, x) \text{ is weight of shortest path from } s \text{ to } x$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$$
$$= d_x + w(x, y) + w(y, \dots, u)$$

Inductive hypothesis: since *x* was extracted before, $d_x = \delta(s, x)$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$
$$= d_x + w(x, y) + w(y, ..., u)$$
$$\geq d_y + w(y, ..., u)$$

By construction of Dijkstra's algorithm, when x is extracted, d_y is updated to satisfy $d_y \le d_x + w(x, y)$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$

Greedy choice property: we always extract the node of minimal distance so $d_u \leq d_y$

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes "cuts" G into (S, V - S)Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$
 $\geq d_u + w(y, ..., u)$
 $\geq d_u$

All edge weights assumed to be positive

Conclusion: We used proof by induction to show:

When node u is removed from the priority queue, $d_u = \delta(s, u)$

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path $(s, ..., u), w(s, ..., u) \ge d_u$

In other words, all paths (s, ..., u) are no shorter than d_u which makes it the shortest path (or one of equally shortest paths).

Indirect Heaps

The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of *indirection*:

- Simple example: an implementation of *FindMax(anArray)* that returns the array index of the max value instead of the value itself
- Pointers in languages like C and C++
- Object references in Java and Python
- A short read: <u>https://en.wikipedia.org/wiki/Indirection</u>

Indirect heaps:

- The idea: have some kind of "index" that, given a node's "ID", you can quickly find where that node is in the heap's tree
- Several ways to implement these
- What's shown in the next slides works well if you identify nodes with strings and you can easily use a good hashtable (dictionary)

Indirect Heap Uses >1 Data Structure

item_at_posn[i] - an array that
tells us what item is stored at
the position i in the tree

posn_of_item[item] - a hashtable
that gives the position in the tree
where a given item ID is stored

Example usage:

- What's the item at the root? item_at_posn[1] → 'C'
- Where in the tree is E? $posn_of_item['E'] \rightarrow 4$
- What item is E's parent?

item_at_posn[posn_of_item['E']/2] = item_at_posn[2] → 'D'

There will be some way of getting the PQ key value from the item, which we'll show as **item.key**. E.g. the min key is **item_at_posn[1].key** \rightarrow 4

0	1	2	3	4	5	6
:-1	C:4	D:6	B:5	E:9	A:8	F:9

А	В	С	D	Е	F
5	3	1	2	4	6

Is decreaseKey more efficient now?

This code shows the idea: decrease B's key and bubble it up one level:

```
item = 'B'
item.key = 3 # it was 5
itemPosn = posn_of_item[item] # 3
parentPosn = itemPosn / 2 # 1
parent = item_at_posn[parentPosn] # 'C'
```

Assuming hashtable lookup is O(1), everything here is O(1). decreaseKey() might have to do this for the height of the tree, so O(log n) overall.

```
# item_at_posn[1] = 'B'
```

```
# item_at_posn[3] = 'C'
```

```
# posn_of_item['C'] = 3
```

```
# posn_of_item['B'] = 1
```

D:6 E:9 (A:8) (F

B:5