
CS 3100
Data Structures and Algorithms 2

Lecture 5: Topological Sort, Connected Components

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Chapter 20: Sections 20-3, 20-4, and 20-5

Announcements

• Upcoming dates
• PS1 due Sept 8 (Friday) at 11:59pm
• PA1 due Sept 17 (Sunday) at 11:59pm

• Office Hours
• Prof Hott: 3-5pm Monday, 4-5pm Thursday
• Prof Horton: 2-3:30 Mon, 3:30-5 Tue, 2:30-4 Thu, 2-3 Fri
• TA office hours posted online

2

Tuesday, Sept 12 at 11:59pm

DFS: Recursively

3

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Using DFS
Consider the “seen times” and “done times”
Edges can be categorized:

• Tree Edge
• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unseen when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 seen but not done when we saw (𝑎, 𝑏)
• 𝑡!""# 𝑏 < 𝑡!""# 𝑎 < 𝑡$%#" 𝑎 < 𝑡$%#"(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was seen and done between when 𝑎 was seen and done
• 𝑡!""# 𝑎 < 𝑡!""# 𝑏 < 𝑡$%#" 𝑏 < 𝑡$%#" 𝑎

• Cross Edge
• (𝑎, 𝑏) connects “branches” of the tree
• 𝑏 was seen and done before 𝑎 was ever seen
• (𝑎, 𝑏) when 𝑡$%#" 𝑏 > 𝑡!""# 𝑎 and 4

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

DFS: Cycle Detection

5

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done 1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

DFS: Cycle Detection

6

def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def hasCycle_rec(graph, curr, seen, done)

 mark curr as seen
 for v in neighbors(current):

 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

DFS: Cycle Detection

7

def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 return hasCycle_rec(graph, s, seen, done)

def hasCycle _rec(graph, curr, seen, done):
 cycle = False
 mark curr as seen
 for v in neighbors(current):
 if v seen and v not done:
 cycle = True
 elif v not seen:
 cycle = dfs_rec(graph, v, seen, done) or cycle
 mark curr as done
 return cycle

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Back Edges in Undirected Graphs

8

Finding back edges for an undirected graph is not quite this simple:
• The parent node of the current node is seen but not done
• Not a cycle, is it? It’s the same edge you just traversed

Question: how would you modify our code to recognize this?

DFS “Sweep” to Process All Nodes

9

def dfs_sweep(graph): # no start node given
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph : # do DFS at every vertex
 if s not seen:
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done) # unchanged
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

Seen: 16
Done: 17

Time Complexity of DFS

10

For a digraph having V vertices and E edges
• Each edge is processed once in the while loop of dfs_rec() for a cost of Θ(𝐸)

• Think about adjacency list data structure.
• Traverse each list exactly once. (Never back up)
• There are a total of E nodes in all the lists

• The non-recursive dfs() algorithm will do Θ(𝑉) work even if there are no edges in the
graph
• Thus over all time-complexity is Θ(𝑉 + 𝐸)

• Remember: this means the larger of the two values
• Reminder: This is considered “linear” for graphs since there are two size parameters for graphs.

• Extra space is used for seen/done (or color) array.
• Space complexity is Θ(𝑉)

Topological Sort

11

Topological Sort

A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

12

1

2

3

4

5

6
7

9

8
1 23 4 56 79 8

Topological Sort

13

What are allowable orderings I can take all these CS classes?
• Note there are many possible orderings
• Unlike sorting a list

Topological Sort

Underwear Socks

ShoesPants

Belt

Shirt

Watch

Tie

Jacket

Getting dressed

Topologically sorted vertices appear in reverse order of their finish times!

We Can Use DFS and Finish Times

This is the same graph
with a different layout.

Notes:
• “Finish” time same as “done” time.
• dfs_sweep() used to visit all nodes
in the digraph.

DFS: Topological sort

16

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

Idea: List in reverse
order by finish time

1

2

3

4

5

6
7

9

8

DFS: Topological sort

18

def top_sort(graph): # has loop like dfs_sweep
 seen = [False, False, False, …] # length matches |𝑉|
 finished = []
 for s in graph:
 if s not seen:
 finish_time(graph, s, seen, finished)
 return reverse(finished)

def finish_time(graph, curr, seen, finished):
 seen[curr] = True
 for v in neighbors(current):
 if v not seen:
 finish_time(graph, v, seen, finished)
 finished.append(curr)

Idea: List in reverse order
by done/finish time

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

Seen: 16
Done: 17

Strongly Connected Components

Readings: CLRS 20.5, but you can ignore the proof-y parts

24

Strongly Connected Components (SCCs)

In a digraph, Strongly Connected Components (SCCs) are subgraphs
where all vertices in each SCC are reachable from one another
• Thus vertices in an SCC are on a directed cycle
• Any vertex not on a directed cycle is an SCC all by itself

Common need: decompose a digraph into its SCCs
• Perhaps then operate on each, combine results based on connections

between SCCs

25

Real-world Example: Social Networks

Model a social network of users
• Directed edge u->v means u follows v

We want to identify a group of users
who follow each other
• Maybe not directly
• OK if it’s indirect, i.e. if there’s a path

connecting any pair in the group

In this example, the group of solid-colored users is an SCC
Note: if all pairs had to follow each other, we call this a clique

26

SCC Example

Example: digraph below has 3 SCCs
• Note here each SCC has a cycle. (Possible to have a single-node SCC.)
• Note connections to other SCCs, but no path leaves a SCC and comes back
• Note there’s a unique set of SCCs for a given digraph

27

Component Graph

Sometimes for a problem it’s useful to consider digraph G’s component
graph, GSCC

• It’s like we ”collapse” each SCC into one node
• Might need a topological ordering between SCCs

28

How to Decompose Digraph into SCCs

Several algorithms do this using DFS
We’ll use CLRS’s choice (by Kosaraju and Sharir)
Algorithm works as follows:

1. Call dfs_sweep(G) to find finishing times u.f for each vertex u in G.
2. Compute GT, the transpose of digraph G.

 (Reminder: transpose means same nodes, edges reversed.)
3. Call dfs_sweep(GT) but do the recursive calls on nodes in the order

of decreasing u.f from Step 1. (Start with the vertex with largest
finish time in G’s DFS tree,…)

4. The DFS forest produced in Step 3 is the set of SCCs

29

Why Do We Care about the Transpose?
If we call DFS on a node in an SCC, it will visit all nodes in that SCC

• But it could leave the SCC and find other nodes L
• Could we prevent that somehow?

Note that a digraph and its transpose have the same SCCs
• Maybe we can use the fact that edge-directions are reversed in GT to stop DFS from

leaving an SCC?
• But this depends on the order you choose vertices to do dfs_sweep() in GT

30

Why Do We Care About Finish Times?

Our algorithm first finds DFS finish times in G
Then calls recursive DFS on transpose GT from vertex with largest finish
time (here, B)
• Reversed edges in GT stop it visiting nodes in other SCCs

31

Why Do We Care About Finish Times?

After recursive DFS on transpose GT finds SCC containing B,
next DFS will start from C
• Nodes in previously found SCC(s) have been visited
• Reversed edges in GT stop it visiting nodes in SCCs yet to be found

32

Ties to Topological Sorting

Formal proof of correctness in CLRS, but hopefully from previous slides you’re
convinced it works!
Note how the use of finish times makes this seem like topological sort. And it is,
if you think of topological ordering for GSCC

• Cycles in G, but no cycles in GSCC so we could sort that
• Topological sort controls the order we do things, and DFS finds all the reachable nodes in

an SCC

33

Final Thoughts

There are many interesting problems involving digraphs and DAGs
They can model real-world situations
• Dependencies, network flows, …

DFS is often a valuable strategy to tackle such problems
• For DAGs, not interested in back-edges, since DAGs are acyclic
• Ordering, reachability from DFS can be useful

34

