CS 3100

Data Structures and Algorithms 2

Lecture 22: Reductions

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings from CLRS 4th Ed: Network flow etc. in Chapter 24 (Reductions covered in CLRS but in a context we're not studying in CS3100)

Warm-Up

Can you fill a 8×8 board with the corners missing using dominoes?

Can you tile this?

With these?

Warm-Up

Can you fill a 8×8 board with the corners missing using dominoes?

Can you tile this?

With these?

Announcements

- Upcoming dates
 - PS5 (Max Flow, Reductions, ML), due December 5, 2023 at 11:59pm
 - PA5 (Tiling Dino) due December 5, 2023 at 11:59pm
 - Quiz 5 (and retakes): December 12, 2023 at 7pm in our normal room
- Updated Late Policy!
 - You must submit an extension request before the deadline
 - Explain why need you need the extension (up to 48 hours past the deadline)
 - Acknowledge that you're getting an extension
 - The late deadline is not the real deadline ©
 - You may then take the additional 48 hours as needed
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Bipartite Matching Reduction

Problem we don't know how to solve

Solution for A

Problem we do know how to solve

Solution for **B**

Must show (prove):

- 1) how to make construction
- 2) Why it works

Edge Disjoint Paths Reduction

Problem we don't know how to solve

Edge Disjoint Paths

Solution for A

Problem we do know how to solve

Vertex Disjoint Paths Reduction

Problem we don't know how to solve

Vertex Disjoint Paths

Solution for A

Problem we do know how to solve

Solution for **B**

Vertex Disjoint Paths Big Picture

Reductions for New Algorithms

- Create an algorithm for a new problem by using one you already know!
- More algorithms = More opportunities!
- The problem you reduced to could itself be solved using a reduction!

In General: Reduction

Problem we don't know how to solve

Problem we do know how to solve

Map Instances of problem *A* to Instances of **B** Injective: any instance of A can be mapped to some instance of **B**. Map Solutions of problem **B** to Solutions of A Reduction

Solution for *A*

Worst Case Lower Bound

• Definition:

- A worst case lower bound on a problem, is an asymptotic lower bound on the worst case running time of any algorithm which solves it
- If f(n) is a worst case lower bound for problem A, then the worst-case running time of any algorithm which solves A must be $\Omega(f(n))$
- i.e. for sufficiently large values of n, for every algorithm which solves A, there is at least one input of size n which causes the algorithm to do $\Omega(f(n))$ steps.

• Examples:

- -n is a worst-case lower bound on finding the minimum in a list
- $-n^2$ is a worst-case lower bound on matrix multiplication

Another use of Reductions

Worst-case lower-bound Proofs

A is not a harder problem than B $A \leq B$

The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof) (e.g., X = some way to open the door)

- 3. Show how to use Y to perform X quickly
- 4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick

Reduction Proof Notation

A is not a harder problem than B

$$A \leq B$$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$

Or we could have solved A faster using B's solver!

Two Ways to use Reductions

Suppose we have a "fast" reduction from A to B

1. A "fast" algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one for B

If A is slow

Then **B** is slow

Bipartite Matching Reduction

Bipartite Matching Reduction

Worst-case Lower-Bound Using Reductions

- Closest Pair of points
 - D&C algorithm: $\Theta(n \log n)$
 - Can we do better?

• Idea: Show that doing closest pair in $o(n \log n)$ enables an impossibly fast algorithm for another problem

Reductions for Lower-Bounds

Reductions for Lower-Bound on CPP

A "Hard" Problem: Element Uniqueness

- Input:
 - A list of integers
- Output:

- True if all values are unique, False otherwise
- Can this be solved in $O(n \log n)$ time?
 - Yes! Sort, then check if any adjacent elements match
- Can this be solved in $o(n \log n)$ time?
 - No! (we're going to skip this <u>Proof</u>)

Reductions for Lower-Bound on CPP

Mapping Instances of Element Uniqueness to CPP

• For each value a in the list, make point (a, a)

Running time?

How to we find the answer to Element Uniqueness from Closest Pair?

Check if closest pair's distance is 0

Running time?

Reductions for Lower-Bound on CPP

Reductions for Lower-Bound on CPP

Two Ways to use Reductions

Suppose we have a "fast" reduction from A to B

1. A "fast" algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one for B

Party Problem

Draw Edges between people who don't get along Find the maximum number of people who get along

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G=(V,E) find the maximum independent set S

Example

Generalized Baseball

Generalized Baseball

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

Example

$MaxIndSet \leq_V MinVertCov$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction

Reduction Idea

S is an independent set of G iff V-S is a vertex cover of G

Reduction Idea

S is an independent set of G iff V-S is a vertex cover of G

Proof: ⇒

S is an independent set of G iff V-S is a vertex cover of G

Let S be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because o.w. S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

Proof: ←

S is an independent set of G iff V-S is a vertex cover of G

Let V - S be a vertex cover

Consider any edge $(x, y) \in E$

At least one of x and y belong to V-S, because V-S is a vertex cover

Therefore x and y are not both in S, No edge has both end-nodes in S, thus S is an independent set

MaxVertCov V-Time Reducible to MinIndSet

MaxIndSet V-Time Reducible to MinVertCov

Corollary

Corollary

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete
 - Next time!