CS 3100

Data Structures and Algorithms 2
 Lecture 22: Reductions

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings from CLRS 4 ${ }^{\text {th }}$ Ed: Network flow etc. in Chapter 24 (Reductions covered in CLRS but in a context we're not studying in CS3100)

Warm-Up

Can you fill a 8×8 board with the corners missing using dominoes?
Can you tile this?

With these?

Can you fill a 8×8 board with the corners missing using dominoes? Can you tile this?

With these?

Announcements

- Upcoming dates
- PS5 (Max Flow, Reductions, ML), due December 5, 2023 at 11:59pm
- PA5 (Tiling Dino) due December 5, 2023 at 11:59pm
- Quiz 5 (and retakes): December 12, 2023 at 7pm in our normal room
- Updated Late Policy!
- You must submit an extension request before the deadline
- Explain why need you need the extension (up to 48 hours past the deadline)
- Acknowledge that you're getting an extension
- The late deadline is not the real deadline ()
- You may then take the additional 48 hours as needed
- Course email (comes to both professors and head TAs):

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Bipartite Matching Reduction

Problem we don't know how to solve

Solution for \boldsymbol{A}

Problem we do know how to solve

Solution for \boldsymbol{B}

Must show (prove):

1) how to make construction 2) Why it works

Edge Disjoint Paths Reduction

Problem we don't know how to solve Edge Disjoint Paths

Solution for \boldsymbol{A}

Problem we do know how to solve
Max Flow

Solution for \boldsymbol{B}

Vertex Disjoint Paths Reduction

Problem we don't know how to solve
Problem we do know how to solve

Edge Disjoint Paths

Solution for \boldsymbol{B}

Vertex Disjoint Paths Big Picture

Vertex Disjoint Paths

Edge Disjoint Paths

Max Flow

Ford Fulkerson

Solution for \boldsymbol{B}

Reductions for New Algorithms

- Create an algorithm for a new problem by using one you already know!
- More algorithms = More opportunities!
- The problem you reduced to could itself be solved using a reduction!

In General: Reduction

Problem we don't know how to solve
Problem we do know how to solve

Worst Case Lower Bound

- Definition:
- A worst case lower bound on a problem, is an asymptotic lower bound on the worst case running time of any algorithm which solves it
- If $f(n)$ is a worst case lower bound for problem A , then the worst-case running time of any algorithm which solves A must be $\Omega(f(n))$
- i.e. for sufficiently large values of n, for every algorithm which solves A, there is at least one input of size n which causes the algorithm to do $\Omega(f(n))$ steps.
- Examples:
$-n$ is a worst-case lower bound on finding the minimum in a list
$-n^{2}$ is a worst-case lower bound on matrix multiplication

Another use of Reductions

Worst-case lower-bound Proofs

Opening a door

A is not a harder problem than B $\boldsymbol{A} \leq \boldsymbol{B}$
The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow
 1. We know X is slow (by a proof)
 (e.g., $X=$ some way to open the door)
 2. Assume Y is quick [toward contradiction] ($Y=$ some way to light a fire)
 3. Show how to use Y to perform X quickly
 4. X is slow, but Y could be used to perform X quickly conclusion: Y must not actually be quick

Reduction Proof Notation

A is not a harder problem than B

$$
A \leq B
$$

If \boldsymbol{A} requires time $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time then \boldsymbol{B} also requires $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time $A \leq_{f(n)} B$

Orwe could have solved A faster using B's solver!

Two Ways to use Reductions

Suppose we have a "fast" reduction from A to B

1. A "fast" algorithm for B gives a fast algorithm for A

Then \mathbf{A} is fast

If \mathbf{B} is fast
2. If we have a worst-case lower bound for A, we also have one for B

If \mathbf{A} is slow

Then \mathbf{B} is slow

Bipartite Matching Reduction

Problem we don't know how to solve

Solution for \boldsymbol{A}

Then this is fast

Problem we do know how to solve

Bipartite Matching Reduction

Problem we don't know how to solve

If this is slow

Solution for \boldsymbol{A}

Problem we do know how to solve

Max Flow

Ford Fulkerson

Worst-case Lower-Bound Using Reductions

- Closest Pair of points
- D\&C algorithm: $\Theta(n \log n)$
- Can we do better?

- Idea: Show that doing closest pair in $o(n \log n)$ enables an impossibly fast algorithm for another problem

Reductions for Lower-Bounds

Problem we know is "Hard"
Problem we want to show is "Hard"

Reductions for Lower-Bound on CPP

Problem we know is $\Omega(n \log n)$
Problem we want to show is $\Omega(n \log n)$
Solution for \boldsymbol{A}

$$
\text { Solutions of } \boldsymbol{A} \text { in } \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})
$$

If this could be done in $o(n \log n)$

A "Hard" Problem: Element Uniqueness

- Input:

113	901	555	512	245	800	018	121
True							

- A list of integers
- Output:

103	801	401	323	255	323	999	101
False							

- True if all values are unique, False otherwise
- Can this be solved in $O(n \log n)$ time?
- Yes! Sort, then check if any adjacent elements match
- Can this be solved in $o(n \log n)$ time?
- No! (we're going to skip this Proof)

Reductions for Lower-Bound on CPP

Problem we know is $\Omega(n \log n)$
Problem we want to show is $\Omega(n \log n)$

Some Algorithm for $C P P$

If this could be done in $o(n \log n)$
Solution for \boldsymbol{B}

Mapping Instances of Element Uniqueness to CPP

Running time?

- For each value a in the list, make point (a, a)

6	3	6	9

Check if closest pair's distance is 0

Running time?
$\Theta(1)$

Reductions for Lower-Bound on CPP

Problem we know is $\Omega(n \log n)$
Problem we want to show is $\Omega(n \log n)$

Then this can be done
in $o(n \log n)$

Solution for \boldsymbol{A}

Map Instances of EU to Instances of $C P P$
\qquad

Some Algorithm for $C P P$

If this could be done in $o(n \log n)$
Solution for \boldsymbol{B}

Reductions for Lower-Bound on CPP

Problem we know is $\Omega(n \log n)$
Problem we want to show is $\Omega(n \log n)$

5	7	9	8
6	3	6	9

Map Instances of EU to Instances of $C P P$

Some Algorithm for $C P P$

This can't be done in $o(n \log n)$ either.

Solution for \boldsymbol{B}

Two Ways to use Reductions

Suppose we have a "fast" reduction from A to B

1. A "fast" algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one for B

Party Problem

Draw Edges between people who don't get along
Find the maximum number of people who get along

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph $G=(V, E)$ find the maximum independent set S

Example

Generalized Baseball

Generalized Baseball

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph $G=(V, E)$ find the minimum vertex cover C

Example

MaxIndSet \leq_{V} MinVertCov

If \boldsymbol{A} requires time $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time then \boldsymbol{B} also requires $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time $A \leq_{V} B$

We need to build this Reduction

Reduction Idea

S is an independent set of G iff $V-S$ is a vertex cover of G

Independent Set
Vertex Cover

Reduction Idea

S is an independent set of G iff $V-S$ is a vertex cover of G

Vertex Cover

Independent Set

Proof: $=$

S is an independent set of G iff $V-S$ is a vertex cover of G
Let S be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because o.w. S would not be an independent set

Therefore $y \in V-S$, so edge (x, y) is covered by $V-S$

Proof: \Leftarrow

S is an independent set of G iff $V-S$ is a vertex cover of G
Let $V-S$ be a vertex cover

Consider any edge $(x, y) \in E$
At least one of x and y belong to $V-S$, because $V-S$ is a vertex cover

Therefore x and y are not both in S,
No edge has both end-nodes in S, thus S is an independent set

MaxVertCov V-Time Reducible to MinIndSet

MaxIndSet V-Time Reducible to MinVertCov

Solution for MinVertCov

O(V) Time

MaxIndSet

"-2

Then this shows solving B is also slow

Solution for MaxIndSet

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
- Spoiler alert: We don't know which!
- (But we think they're both slow)
- Both problems are NP-Complete
- Next time!

