
Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings from CLRS 4th Ed: Network flow etc. in Chapter 24
(Reductions covered in CLRS but in a context we’re not studying in CS3100)

CS 3100
Data Structures and Algorithms 2

Lecture 22: Reductions

2

Can you fill a 𝟖×𝟖 board with the corners missing using dominoes?

Can you tile this?

With these?

Warm-Up

3

Can you fill a 𝟖×𝟖 board with the corners missing using dominoes?

Can you tile this?

With these?

Warm-Up

Announcements

• Upcoming dates
• PS5 (Max Flow, Reductions, ML), due December 5, 2023 at 11:59pm
• PA5 (Tiling Dino) due December 5, 2023 at 11:59pm
• Quiz 5 (and retakes): December 12, 2023 at 7pm in our normal room

• Updated Late Policy!
• You must submit an extension request before the deadline
• Explain why need you need the extension (up to 48 hours past the deadline)
• Acknowledge that you’re getting an extension

• The late deadline is not the real deadline J
• You may then take the additional 48 hours as needed

• Course email (comes to both professors and head TAs):

 cs3100@cshelpdesk.atlassian.net
4

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

5

Bipartite Matching Reduction

6

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/1
0/1
0/1
1/11/10/1

1/1
1/1

1/1
1/1

1/1
1/1
1/1

1/1

Reduction

Must show (prove):
1) how to make construction
2) Why it works

Edge Disjoint Paths Reduction

7

Edge Disjoint Paths
Problem we don’t know how to solve Problem we do know how to solve

𝐴
𝐵

Solution for 𝑨

Reduction

𝑠

𝑡

g

h

b
e

f

a
c

1/1

1/1

1/1
1/1

1/1
1/1 1/1

1/1
1/11

/
1

0/1

0/1

0/1
0/1 0/1

𝑠

𝑡

g

h

b
e

f

a
c

Max Flow

Solution for 𝑩

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠

𝑡

g

h

b
e

f

a
c

Use edges with flow

Vertex Disjoint Paths Reduction

8

Vertex Disjoint Paths
Problem we don’t know how to solve Problem we do know how to solve

𝐴
𝐵

Solution for 𝑨

Reduction

𝑠

𝑡

g

h

b
e

f

a
c

Edge Disjoint Paths

Solution for 𝑩

𝑠

𝑡

g

h

b
e

f

a
c

𝑠

𝑡

g

h

b
e

f

a
c

g in g
out

𝑠

𝑡

g

h

b
e

f

a
c

g in g
out

Merge these back:

Vertex Disjoint Paths Big Picture

9

Vertex Disjoint Paths

𝑠

𝑡

g

h

b
e

f

a
c

Edge Disjoint Paths

𝑠

𝑡

g

h

b
e

f

a
c

𝑠

𝑡

g

h

b
e

f

a
c

𝑠

𝑡

g

h

b
e

f

a
c

Reduction

g in g
out

g in g
out

Merge these back:

Max Flow

Solution for 𝑩

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

Reduction

𝑠

𝑡

g

h

b
e

f

a
c

1/1

1/1

1/1
1/1

1/1
1/1 1/1

1/1
1/11

/
1

0/1

0/1

0/1
0/1 0/1

Use edges with flow

Reductions for New Algorithms

• Create an algorithm for a new problem by using one you
already know!

• More algorithms = More opportunities!
• The problem you reduced to could itself be solved using a

reduction!

In General: Reduction

11

Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to
Instances of 𝑩

Using any Algorithm
for 𝑩

Map Solutions of problem 𝑩	to
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A
can be mapped to some

instance of B.

Worst Case Lower Bound

• Definition:
– A worst case lower bound on a problem, is an asymptotic lower bound on

the worst case running time of any algorithm which solves it
– If 𝑓(𝑛) is a worst case lower bound for problem A, then the worst-case

running time of any algorithm which solves A must be Ω 𝑓 𝑛
– i.e. for sufficiently large values of 𝑛, for every algorithm which solves A,

there is at least one input of size 𝑛 which causes the algorithm to do
Ω 𝑓 𝑛 steps.

• Examples:
– 𝑛 is a worst-case lower bound on finding the minimum in a list
– 𝑛! is a worst-case lower bound on matrix multiplication

Another use of Reductions

13

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to
Instances of 𝑩

Using any Algorithm
for 𝑩

Map Solutions of problem 𝑩	to
Solutions of 𝑨

𝑌𝑋

An algorithm for A

Suppose I knew a
worst-case lower bound
of Ω 𝑓 𝑛 for A

Ω 𝑓 𝑛 This path must be
Ω 𝑓 𝑛

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
 𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion: Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow

Reduction Proof Notation

16

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝑨 is not a harder problem than 𝑩
 𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏) time then 𝑩 also requires 𝛀(𝒇 𝒏) time
 𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛) overhead

Or we
could have

solved A
faster

using B’s
solver!

Two Ways to use Reductions

Suppose we have a “fast” reduction from A to B

1. A “fast” algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one
for B

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

fast

fast
If B is fast

Then A is fast

If A is slow

Then B is slow
fast

Bipartite Matching Reduction

18

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/1
0/1
0/1
1/11/10/1

1/1
1/1

1/1
1/1

1/1
1/1
1/1

1/1

Reduction

Then this is fast If this is fast

Bipartite Matching Reduction

19

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/1
0/1
0/1
1/11/10/1

1/1
1/1

1/1
1/1

1/1
1/1
1/1

1/1

Reduction

If this is slow Then this is slow

Worst-case Lower-Bound Using Reductions

• Closest Pair of points
– D&C algorithm: Θ 𝑛 log 𝑛
– Can we do better?

• Idea: Show that doing closest pair in 𝑜 𝑛 log 𝑛 enables an
impossibly fast algorithm for another problem

1 2

3

4
5

6

7

8

Reductions for Lower-Bounds

21

Problem we know is “Hard” Problem we want to show is “Hard”

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Quickly Map Instances of
problem 𝑨	to Instances of 𝑩

Some Algorithm for 𝑩

Quickly Map Solutions of
problem 𝑩	to Solutions of 𝑨

𝑌𝑋

If this is quick,

and this is quick,

“Hard” means this
must be slow

and this must be slow,
then this this can’t be

fast!

Reductions for Lower-Bound on CPP

22

Problem we know is 𝛀 𝒏 𝐥𝐨𝐠𝒏 Problem we want to show is 𝛀 𝒏 𝐥𝐨𝐠𝒏

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to
Instances of 𝐶𝑃𝑃 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

Some Algorithm for 𝐶𝑃𝑃

Map Solutions of 𝐶𝑃𝑃 to
Solutions of 𝑨 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

𝑋

Closest Pair
of Points

If this could be done in
𝑜(𝑛 log 𝑛)

Then this can be done
in 𝑜(𝑛 log 𝑛)

𝛀 𝒏 𝐥𝐨𝐠𝒏

A “Hard” Problem: Element Uniqueness

• Input:
– A list of integers

• Output:
– True if all values are unique, False otherwise

• Can this be solved in 𝑂 𝑛 log 𝑛 time?
– Yes! Sort, then check if any adjacent elements match

• Can this be solved in 𝑜(𝑛 log 𝑛) time?
– No! (we’re going to skip this Proof)

103 801 401 323 255 323 999 101

113 901 555 512 245 800 018 121 True

False

https://en.wikipedia.org/wiki/Element_distinctness_problem

Reductions for Lower-Bound on CPP

24

Problem we know is 𝛀 𝒏 𝐥𝐨𝐠𝒏 Problem we want to show is 𝛀 𝒏 𝐥𝐨𝐠𝒏

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to
Instances of 𝐶𝑃𝑃 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

Some Algorithm for 𝐶𝑃𝑃

Map Solutions of 𝐶𝑃𝑃 to
Solutions of 𝑨 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

𝑋

Closest Pair
of Points

If this could be done in
𝑜(𝑛 log 𝑛)

𝛀 𝒏 𝐥𝐨𝐠𝒏

5 7 9 8

6 3 6 9

Element Uniqueness

Then this can be done
in 𝑜(𝑛 log 𝑛)

Mapping Instances of Element Uniqueness to CPP

• For each value 𝑎 in the list, make point 𝑎, 𝑎

5 7 9 8

5,5

7,7

8,8

9,9

6 3 6 9

3,3

6,6

9,9

6,6

Running time?

How to we find the answer to Element
Uniqueness from Closest Pair?

Θ(𝑛)

Check if closest pair’s
distance is 0

Running time?
Θ(1)

Reductions for Lower-Bound on CPP

26

Problem we know is 𝛀 𝒏 𝐥𝐨𝐠𝒏 Problem we want to show is 𝛀 𝒏 𝐥𝐨𝐠𝒏

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction

Map Instances of EU to Instances
of 𝐶𝑃𝑃

Some Algorithm for 𝐶𝑃𝑃

Map Solutions of 𝐶𝑃𝑃 to
Solutions of 𝑨 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

𝑋

Closest Pair
of Points

If this could be done in
𝑜(𝑛 log 𝑛)

𝛀 𝒏 𝐥𝐨𝐠𝒏

5 7 9 8

6 3 6 9

Element Uniqueness

Is closest distance > 0?

Then this can be done
in 𝑜(𝑛 log 𝑛)

Reductions for Lower-Bound on CPP

27

Problem we know is 𝛀 𝒏 𝐥𝐨𝐠𝒏 Problem we want to show is 𝛀 𝒏 𝐥𝐨𝐠𝒏

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction

Map Instances of EU to Instances
of 𝐶𝑃𝑃

Some Algorithm for 𝐶𝑃𝑃

Map Solutions of 𝐶𝑃𝑃 to
Solutions of 𝑨 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

𝑋

Closest Pair
of Points

Since this can’t be
done in 𝑜 𝑛 log 𝑛

𝛀 𝒏 𝐥𝐨𝐠𝒏

5 7 9 8

6 3 6 9

Element Uniqueness

Is closest distance > 0?

This can’t be done in
𝑜(𝑛 log 𝑛) either.

And these are
𝑜 𝑛 log 𝑛

And these are
𝑜 𝑛 log 𝑛

Two Ways to use Reductions

Suppose we have a “fast” reduction from A to B

1. A “fast” algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one
for B

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

fast

fast If B is fastThen A is fast

If A is slow Then B is slowfast

Party Problem

33

Draw Edges between people who don’t get along
Find the maximum number of people who get along

Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆

34

Example

35

Independent set of size 6

Generalized Baseball

36

Generalized Baseball

37

Need to place defenders on bases
such that every edge is defended

What’s the fewest number of
defenders needed?

Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the
minimum vertex cover 𝐶

38

Example

39

Vertex cover of size 5

MaxIndSet≤6MinVertCov

40

𝑂(𝑉)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏) time then 𝑩 also requires 𝛀(𝒇 𝒏) time
 𝑨 ≤𝑽 𝑩

With 𝑂(𝑉) overhead

We need to build this Reduction

41

𝐴 𝐵

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm
for MinVertCov

Relate Solutions of MinVertCov	to
Solutions of MaxIndSet

𝑌𝑋

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Reduction Idea
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

42

Independent Set
Vertex Cover

Reduction Idea
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

43

Independent SetVertex Cover

Proof: ⇒
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

44

Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because o.w. 𝑆 would not be an
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆

Proof: ⇐
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

45

Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆,
No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set

MaxVertCov 𝑉-Time Reducible to MinIndSet

46

MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

MaxIndSet 𝑉-Time Reducible to MinVertCov

47

𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet

Corollary

48

𝐴 𝐵

Reduction

Do nothing

Using any Algorithm
for MinIndSet

Take complement of solution

𝑌𝑋

O(V) Time

If Solving 𝑨 was
always slow

Then this shows
solving 𝑩 is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Corollary

49

𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm
for MaxVertCovIf Solving 𝑨 was

always slow
Then this shows
solving 𝑩 is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet

Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete
• Next time!

50

