CS 3100

Data Structures and Algorithms 2

Lecture 21: Reductions, Bipartite Matching

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings from CLRS 4t" Ed:
Chapter 24

Divide and Conquer®

:ili=

* Divide:
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
e Solve them directly (base case)

* Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A,
relate it to smaller instances of Problem A

* Next:

— Take an instance of Problem A,
relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

How could we solve this?
Talk with your neighbors!

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

Set of edge-disjoint paths of size 4

Max flow =4

10

Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

11

Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to £ which share no vertices

Not a vertex-disjoint path!

12

Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to £ which share no vertices

How could we solve this?
Talk with your neighbors!

13

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to

outgoing edges
Compute Edge-Disjoint Paths on new graph

Restricts to 1

14

Maximum Bipartite Matching

Dog Lovers Dogs

15

Maximum Bipartite Matching

Dog Lovers Dogs

16

Maximum Bipartite Matching

Dog Lovers Dogs

17

Maximum Bipartite Matching

Given agraph G = (L,R, E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.

18

Maximum Bipartite Matching

How could we solve this?
Talk with your neighbors!

19

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G’ = (V',E") by:

 Addingin a source and sink to the set of nodes:
—V'=LURU {s,t}

 Adding an edge from source to L and from R to sink:
— E'=EU{uel|(s,u)}u{ver]|(vt)}

 Make each edge capacity 1: -
—Ve€E' cle) =1

20

Maximum Bipartite Matching Using Max Flow

. , O(E - V)
1. Make G into G O(L + R)

2. Compute Max Flowon G' ©(E-V) Since|f| <L
3. Return M as all “middle” edges with flow 1 o + Rr)

Ve
;
p

21

e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

22

Shows how two different problems relate to each other

23

MacGyver's Reduction

Problem we don’t know how to solve

Opening a door

Solution for 4

Keg cannon
battering ram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

Y

/ ‘ CA(‘S'} \]
x i G L L /
RRAO%

Put fire under the Keg

Reduction

Solution for B

Alcohol, wood,
matches

24

Bipartite Matching Reduction

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching

Max Flow

Ford erson

Solution for B
47N

Must show (prove):
1) how to make construction

Reduction
\I\Z) Why it works

25

In General: Reduction

Problem we don’t know how to solve Problem we do know how to solve
Map Instances of problem A to
Instances of B
e B
a I

. : Using any Algorithm
Injective: any instance of A for B

can be mapped to some
instance of B.
o j
Map Solutions of problem B to
Solutions of A

Solution for A _
Solution for B

Y

Reduction

26

Worst-case lower-bound Proofs

Opening a door Lighting a fire
P\ (S
reduces to B).v"m ﬁ)/
o R R
Problem B

Problem A

Alcohol, wood, Keg cannon
matches battering ram
Vv can be used
to make
/i [Algorithm for B Algorithm forA £

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X'is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

Reduction Proof Notation

f (n)-reduces to > B

Problem B

Problem A

Y can be used to make

With O(f(n)) overhead

Algorithm for B Algorithm for A

A is not a harder problem than B
A<B

If A requires time Q(f(n)) time then B also requires Q(f(n)) time

29

