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Divide and Conquer*

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, 

relate it to smaller instances of Problem A

• Next:
– Take an instance of Problem A, 

relate it to an instance of Problem B
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c



Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 3



Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4



Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

How could we solve this?  
Talk with your neighbors!



Edge-Disjoint Paths Algorithm
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Make 𝑠 and 𝑡 the source and sink, give each edge capacity 1, find the max flow.

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4
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0/1
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Max flow = 4



Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c



Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

Not a vertex-disjoint path!



Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

How could we solve this?  
Talk with your neighbors!



Vertex-Disjoint Paths Algorithm

14

Idea: Convert an instance of the vertex-disjoint paths problem into an instance 
of edge-disjoint paths

𝑠

𝑡

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming edges, the other to 
outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint Paths on new graph



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching

16

Dog Lovers Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
 a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿 
or 𝑣 ∈ 𝑅 is incident to at most one edge.
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Maximum Bipartite Matching
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Dog Lovers Dogs

How could we solve this?  
Talk with your neighbors!



Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺! = (𝑉!, 𝐸!) by:
• Adding in a source and sink to the set of nodes: 
– 𝑉# = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}

• Adding an edge from source to 𝐿 and from 𝑅 to sink:
–  𝐸# = 𝐸 ∪ 𝑢 ∈ 𝐿	 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟	 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸#, 𝑐 𝑒 = 1
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Maximum Bipartite Matching Using Max Flow

1. Make 𝐺 into 𝐺′ 
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1
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Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉) Since 𝑓 ≤ 𝐿

Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉)

𝑠
𝑡
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Reductions
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Shows how two different problems relate to each other

MOVIE TIME!



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3
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Ford Fulkerson

𝑠
𝑡

1
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𝑠
𝑡

0/1
0/1

1/1

1/1
0/1
0/1
1/11/10/1

1/1
1/1

1/1
1/1

1/1
1/1
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Reduction

Must show (prove):
1) how to make construction
2) Why it works



In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩	to 
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A 
can be mapped to some 

instance of B.



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X  is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
    𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead


