CS 3100
 Data Structures and Algorithms 2
 Lecture 21: Reductions, Bipartite Matching
 Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings from CLRS $4^{\text {th }}$ Ed:
Chapter 24

Divide and Conquer*

- Divide:

曲囲

- Break the problem into multiple subproblems, each smaller instances of the original
- Conquer:
- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)
- Combine:
- Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

- Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

So far

- Divide and Conquer, Dynamic Programming, Greedy
- Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
- Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

How could we solve this?

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1 , find the max flow.

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Maximum Bipartite Matching

Maximum Bipartite Matching

Maximum Bipartite Matching

Maximum Bipartite Matching

Given a graph $G=(L, R, E)$
a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching

How could we solve this? Talk with your neighbors!

Maximum Bipartite Matching Using Max Flow

Make $G=(L, R, E)$ a flow network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by:

- Adding in a source and sink to the set of nodes:
$-V^{\prime}=L \cup R \cup\{s, t\}$
- Adding an edge from source to L and from R to sink:
- $E^{\prime}=E \cup\{u \in L \mid(s, u)\} \cup\{v \in r \mid(v, t)\}$
- Make each edge capacity 1 :
$-\forall e \in E^{\prime}, c(e)=1$

Maximum Bipartite Matching Using Max Flow

1. Make G into $G^{\prime} \quad \Theta(L+R)$

$$
\Theta(E \cdot V)
$$

2. Compute Max Flow on $G^{\prime} \quad \Theta(E \cdot V) \quad$ Since $|f| \leq L$
3. Return M as all "middle" edges with flow $1 \quad \Theta(L+R)$

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

Shows how two different problems relate to each other

MacGyver's Reduction

Problem we don't know how to solve
Problem we do know how to solve

Bipartite Matching Reduction

Problem we don't know how to solve

Solution for \boldsymbol{A}

Problem we do know how to solve

Solution for \boldsymbol{B}

Must show (prove):

1) how to make construction
2) Why it works

In General: Reduction

Problem we don't know how to solve
Problem we do know how to solve

Worst-case lower-bound Proofs

Opening a door

A is not a harder problem than B $\boldsymbol{A} \leq \boldsymbol{B}$
The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow
 1. We know X is slow (by a proof)
 (e.g., $X=$ some way to open the door)
 2. Assume Y is quick [toward contradiction] ($Y=$ some way to light a fire)
 3. Show how to use Y to perform X quickly
 4. X is slow, but Y could be used to perform X quickly conclusion: Y must not actually be quick

Reduction Proof Notation

A is not a harder problem than B

$$
A \leq B
$$

If \boldsymbol{A} requires time $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time then \boldsymbol{B} also requires $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time

$$
A \leq_{f(n)} B
$$

