
Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings from CLRS 4th Ed:
Chapter 24

CS 3100
Data Structures and Algorithms 2

Lecture 21: Reductions, Bipartite Matching

Divide and Conquer*

• Divide:
– Break the problem into multiple subproblems, each smaller instances of

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first

3

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

4

So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A,

relate it to smaller instances of Problem A

• Next:
– Take an instance of Problem A,

relate it to an instance of Problem B

5

Edge-Disjoint Paths

6

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a
destination node 𝑡, give the maximum number of paths
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Edge-Disjoint Paths

7

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a
destination node 𝑡, give the maximum number of paths
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 3

Edge-Disjoint Paths

8

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a
destination node 𝑡, give the maximum number of paths
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

Edge-Disjoint Paths

9

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a
destination node 𝑡, give the maximum number of paths
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

How could we solve this?
Talk with your neighbors!

Edge-Disjoint Paths Algorithm

10

Make 𝑠 and 𝑡 the source and sink, give each edge capacity 1, find the max flow.

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

1/1

1/1

1/1

1/1

1/1

1/1
1/1

1/1

1/1
1/1

0/1

0/1

0/1

0/1
0/1

Max flow = 4

Vertex-Disjoint Paths

11

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a
destination node 𝑡, give the maximum number of paths
from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

Vertex-Disjoint Paths

12

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

Not a vertex-disjoint path!

Vertex-Disjoint Paths

13

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

How could we solve this?
Talk with your neighbors!

Vertex-Disjoint Paths Algorithm

14

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths

𝑠

𝑡

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming edges, the other to
outgoing edges

g
out

Restricts to 1
edge

Compute Edge-Disjoint Paths on new graph

Maximum Bipartite Matching

15

Dog Lovers Dogs

Maximum Bipartite Matching

16

Dog Lovers Dogs

Maximum Bipartite Matching

17

Dog Lovers Dogs

Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
 a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿
or 𝑣 ∈ 𝑅 is incident to at most one edge.

18

Maximum Bipartite Matching

19

Dog Lovers Dogs

How could we solve this?
Talk with your neighbors!

Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺! = (𝑉!, 𝐸!) by:
• Adding in a source and sink to the set of nodes:
– 𝑉# = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}

• Adding an edge from source to 𝐿 and from 𝑅 to sink:
– 𝐸# = 𝐸 ∪ 𝑢 ∈ 𝐿	 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟	 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸#, 𝑐 𝑒 = 1

20

𝑠
𝑡

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1

Maximum Bipartite Matching Using Max Flow

1. Make 𝐺 into 𝐺′
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1

21

Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉) Since 𝑓 ≤ 𝐿

Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉)

𝑠
𝑡

0/1

0/11/1

1/1
0/1
0/1

1/1
1/1

0/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

22

Reductions

23

Shows how two different problems relate to each other

MOVIE TIME!

MacGyver’s Reduction

24

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon
battering ram

Solution for 𝑨

Aim duct at door,
insert keg

How
?

Put fire under the Keg

Reduction

Bipartite Matching Reduction

25

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/1
0/1
0/1
1/11/10/1

1/1
1/1

1/1
1/1

1/1
1/1
1/1

1/1

Reduction

Must show (prove):
1) how to make construction
2) Why it works

In General: Reduction

26

Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to
Instances of 𝑩

Using any Algorithm
for 𝑩

Map Solutions of problem 𝑩	to
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A
can be mapped to some

instance of B.

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
 𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion: Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow

Reduction Proof Notation

29

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝑨 is not a harder problem than 𝑩
 𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏) time then 𝑩 also requires 𝛀(𝒇 𝒏) time
 𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛) overhead

