CS 3100

Data Structures and Algorithms 2

Lecture 21: Reductions, Bipartite Matching

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings from CLRS 4th Ed: Chapter 24

Divide and Conquer*

 Break the problem into multiple subproblems, each smaller instances of the original

• Conquer:

Divide:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)
- Combine:
 - Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Divide and Conquer, Dynamic Programming, Greedy
 - Take an instance of *Problem A*, relate it to smaller instances of *Problem A*
- Next:
 - Take an instance of *Problem A*,
 relate it to an instance of *Problem B*

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

e

How could we solve this? Talk with your neighbors!

Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Dog Lovers Dogs

Dog Lovers Dogs

Dog Lovers

Dogs

Given a graph G = (L, R, E)

a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

How could we solve this? Talk with your neighbors!

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

• Adding in a source and sink to the set of nodes:

 $-V' = L \cup R \cup \{s, t\}$

- Adding an edge from source to *L* and from *R* to sink: $-E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in r \mid (v, t)\}$
- Make each edge capacity 1:
 - $\forall e \in E', c(e) = 1$

Maximum Bipartite Matching Using Max Flow

- 1. Make G into $G' = \Theta(L+R)$
- 2. Compute Max Flow on $G' \quad \Theta(E \cdot V) \quad \text{Since } |f| \leq L$
- 3. Return *M* as all "middle" edges with flow 1 $\Theta(L+R)$

 $\Theta(E \cdot V)$

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

Shows how two different problems relate to each other

MacGyver's Reduction

Bipartite Matching Reduction

Problem we do know how to solve

In General: Reduction

Problem we don't know how to solve

Solution for A

Problem we do know how to solve

Worst-case lower-bound Proofs

The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

2. Assume Y is quick [toward contradiction](Y = some way to light a fire)

3. Show how to use *Y* to perform *X* quickly

4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick

Reduction Proof Notation

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$