CS 3100

Data Structures and Algorithms 2 Lecture 18: Seam Carving

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 14

Announcements

- Upcoming dates
- PA3 (Clustering) due October 29, 2023 at 11:59pm
- PS4 (Dynamic Programming), due November 2, 2023 at 11:59pm
- PA4 (Seam Carving) due November 12, 2023 at 11:59pm
- Quizzes 3-4 (Greedy, Dynamic Programming) on November 9, 2023 in class
- Updated Late Policy!
- You must submit an extension request before the deadline
- Explain why need you need the extension (up to 48 hours past the deadline)
- Acknowledge that you're getting an extension
- The late deadline is not the real deadline $-:$
- You may then take the additional 48 hours as needed
- Course email (comes to both professors and head TAs):

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:
$\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right]$
Brute Force: $O\left(2^{n}\right)$

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\operatorname{Cut}(n)=\max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\ldots \\
\operatorname{Cut}(0)+P[n]
\end{array} \quad \begin{array}{l}
\text { 2. Save sub- } \\
\text { solutions to } \\
\text { memory! }
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

1. Identify the Recursive Structure of the Problem

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

$$
\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
$$

2. Save Subsolutions in Memory

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } \mathrm{M}[\mathrm{n}]} \\
& \text { Save to } \mathrm{M}[\mathrm{n}] \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

3. Select a good order for solving subproblems

Time!
In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the
 ocean. How did George make this discovery?

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropping

- Removes a "block" of pixels

Scaling

- Removes "stripes" of pixels

Seam Carving

- Removes "least energy seam" of pixels
- https://trekhleb.dev/js-image-carver/

Carved

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Seattle Skyline

Energy of a Seam

- Sum of the energies of each pixel

$$
e(p)=\text { energy of pixel } p
$$

- Many choices for pixel energy
- E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
- Particular choice doesn't matter, we use it as a "black box"
- Goal: find least-energy seam to remove

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Finding the Least Energy Seam

Want to delete the least energy seam going from bottom to top, so delete:

$$
\min _{k=1}(S(n, k))
$$

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$
(i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)
$S(n, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ p_{n, k} \\ s(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$
$s(n-1, k-1)=s(n-1, k)$
$s(n-1, k+1)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:
$X=$ ATCTGAT
$Y=$ TGCATA
$L C S=T C T A$

Brute force: Compare every subsequence of X with Y
$\Omega\left(2^{n}\right)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\operatorname{ATCTGCGT} \\
Y & =\operatorname{TGCATAT} \\
\operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j-1)+1
\end{aligned}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{cc}
X=A T C T G C G A & X=A T C T G C G T \\
Y=T G C A T A T & Y=T G C A T A C \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\operatorname{ATCTGCGT} \\
Y & =\operatorname{TGCATAT} \\
\operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j-1)+1
\end{aligned}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{cc}
X=A T C T G C G A & X=A T C T G C G T \\
Y=T G C A T A T & Y=T G C A T A C \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

X = "alkjdflaksjdf"
$Y=$ "lakjsdflkasjdlfs"
$M=2 d$ array of len (X) rows and len (Y) columns, initialized to -1
def LCS(int i, int j):
\# returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y \# memoization
if $M[i, j]>-1$:
return $\mathrm{M}[\mathrm{i}, \mathrm{j}]$
\#base case:
if $i=0$ or $j=0$:
ans $=0$
elif $X[i]==Y[j]$:
ans $=\operatorname{LCS}(\mathrm{i}-1, \mathrm{j}-1)+1$
else:

$$
\text { ans }=\max (\operatorname{LCS}(\mathrm{i}, \mathrm{j}-1), \operatorname{LCS}(\mathrm{i}-1, \mathrm{j}))
$$

$M[i, j]=$ ans
return ans
$\operatorname{print}(\operatorname{LCS}(\operatorname{len}(X)+1, \operatorname{len}(Y)+1))$ \# the answer for the entirety of X and Y

$$
\operatorname{LCS}(i, j)=\left\{\begin{array}{l}
0 \\
\operatorname{LCS}(i-1, j-1)+1 \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j))
\end{array}\right.
$$

if $i=0$ or $j=0$
if $X[i]=Y[j]$
otherwise

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

\& $X=$		0	A 1	T 2	C 3	T 4	G 5	A 6	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$
\begin{aligned}
& \operatorname{CCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
\end{aligned}
$$

Run Time: $\Theta(n \cdot m)($ for $|X|=n,|Y|=m)$

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

\& $X=$		0	A1	T2	C3	T	G	A 6	T7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	12	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	/ 3	3
T	5	0	1	2	2	3	3	3	${ }^{4}$
A	6	0	1	2	2	3	3	4	4

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

