CS 3100

Data Structures and Algorithms 2

Lecture 18: Seam Carving

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4t edition:
 Chapter 14

Announcements

* Upcoming dates
 PA3 (Clustering) due October 29, 2023 at 11:59pm
PS4 (Dynamic Programming), due November 2, 2023 at 11:59pm
e PA4 (Seam Carving) due November 12, 2023 at 11:59pm
 Quizzes 3-4 (Greedy, Dynamic Programming) on November 9, 2023 in class

. Updated Late Policy!
You must submit an extension request before the deadline
 Explain why need you need the extension (up to 48 hours past the deadline)

 Acknowledge that you're getting an extension
* The late deadline is not the real deadline ©

* You may then take the additional 48 hours as needed
 Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the (optimal) solutions to smaller ones

* |dea:

1. ldentify the recursive structure of the problem
 What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

Log Cutting

Given a log of length n
A list (of length n) of prices P (P|i] is the price of a cut of size i)
Find the best way to cut the log

Price: 1 5 8 9 1110|1717 | 20| 24| 30

Length: 1 2 3 4 5 6 7 8 9 10

Select a list of lengths 4, ..., € such that:
2.t =n
to maximize), P[?;] Brute Force: O(2")

1. ldentity Recursive Structure

Pli] = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

 Cut(n — 1) + P[1]
Cut(n) = max — Cut(n—2)+ P[Z]

2. Save sub-
solutions to
memory!)

\.C.’.ut(O) + P[n]

Cut(n — €y)

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first
[Cut(3) + P[1]
Cut(2) + P[2
Cut(1) + P|3]
. Cut(0) + P[4

Cut(4) = max

Cut(i): 0

length: 0 1 2 3 4 5 6 7 8 9 10

Matrix Chaining

* Given a sequence of Matrices (M4, ..., M,;), what is the most
efficient way to multiply them?

1. ldentity the Recursive Structure of the Problem

* |n general:
Best(i,j) = cheapest way to multiply together M; through M;
j—-1
Best(i,j) = rEin(Best(i, k) + Best(k +1,j) + rirk+1cj)
=i

Best(i,i) =0

Best(2,n) + rryc,

Best(1,2) + Best(3,n) + rr3cy,

Best(1,3) + Best(4,n) + ryrucy,
Best(1,n) = min — Best(1,4) + Best(5,n) + rirscy,

Best(1,n — 1) + rr,c,

N~

2. Save Subsolutions in Memory

* |n general:

Best(i,j) = cheapest

way to multiply together M; through M;

Jj—1
Best(i,j) = rEin(Best(i, k) + Best(k +1,j) + TiTk+1Cj)

Best(i,i) =0

—

Save to M[n]

Best(1,n) = min —

Read from M[n]
if present

Best(2,n) + ryrycy

Best(1,2) + Best(3,n) + ryrscy
Best(1,3) + Best(4,n) + ryr.cy
Best(1,4) + Best(5,n) + ryrscp,

Best(1,n — 1) + rir,cq

~—

3. Select a good order for solving subprob\ems

3..@ E..
X 15 @l X 5 M,

Best(i,j) = m1n(Best(l k) + Best(k +1,j) + rlrkﬂc])
j=1 2 3 4 5 6 A\

Best(i,i) =0

To find Best(i, j): Need all preceding
terms of row i and column j

Conclusion: solve in order of diagonal

el

ne hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated
argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
https://www.youtube.com/watch?v=pSB3HdmLcY4 11

https://www.youtube.com/watch?v=pSB3HdmLcY4

* Method for image resizing that doesn’t scale/crop the image

13

Seam Carving

* Method for image resizing that doesn’t scale/crop the image

14

Cropping

 Removes a “block” of pixels

Scaling

* Removes “stripes” of pixels

Seam Carving

* Removes “least energy seam” of pixels

Carved

=N

https://trekhleb.dev/js-image-carver/

18

Image

Carved

[gle

Scaled

ing that doesn’t scale/crop the

-
W
O
-
W
Q
p

IMage resiz

e Method for

Seattle Skyline

ap Wy
> 0440 V4|

Energy of a Seam

* Sum of the energies of each pixel
e(p) = energy of pixel p

* Many choices for pixel energy

— E.g.: change of gradient (how much the color of this pixel differs from
its neighbors)

— Particular choice doesn’t matter, we use it as a “black box”

* Goal: find least-energy seam to remove

20

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* |dea:
1. Identify the recursive structure of the problem
 What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

21

| dentify Recursive Structure

Let S(i,j) = least energy seam from the bottom of the image up
to pixel pi,j

22

Finding the Least Energy Seam

Want to delete the least energy seam going from bottom to top, so delete:

rlﬁ? (S(n, k))

r Pn k

23

Computing S(n, k)

Assume we know the least energy seams for all of rown — 1
(i.e. we know S(n — 1, ¢) for all £)

pn,k

Known
through—
n—1

24

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

pn,k

S(n-llk_l)

25

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

S(n—1,k—1) + e(pny)
S(n — 1, k) + e(pn,k)

Sm—1k+1)+e(Pnk)
S(n,k) o
S(n-llk_l)

S(n, k) = min—

pn,k

26

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

27

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

28

Longest Common Subseguence

Given two sequences X and Y,
find the length of their longest
common subsequence

Example:

X =ATCTGAT
Y=TGCATA
LCS=TCTA

Brute force: Compare every

subsequence of X withY
Q2™

29

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem is the (optimal) solutions to a smaller one plus
one “decision”

* |dea:

1. ldentify the substructure of the problem

 What are the options for the “last thing” done? What subproblem comes from each?
2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

30

1. ldentity Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y
Find LCS(1,)):
Case 1: X[i]| = Y[j] X =ATCTGCGT

Y =TGCATAT
LCS(i,j) =LCS(i—1,j—1)+1

Case 2: X|i] + Y[j]

X=ATCTGCGA X=ATCTGCGT
Y=TGCATAT Y=TGCATAC
LCS(i,j) = LCS(i,j — 1) LCS(i,j) = LCS(i — 1,))
0 ifi=0o0rj=0
LCS(i,j)) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise 31

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem is the (optimal) solutions to a smaller one plus
one “decision”

* |dea:

1. ldentify the substructure of the problem

 What are the options for the “last thing” done? What subproblem comes from each?
2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

32

1. ldentity Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y

Find LCS(i,)):

Case 1: X[i]| = Y[j] X =ATCTGCGT
Y =TGCATAT
LCS(i,j) =LCS(i—1,j—1)+1

Case 2: X|i] + Y[j]

X=ATCTGCGA X=ATCTGCGT
Y=TGCATAT Y=TGCATAC
LCS(i,j) = LCS(i,j — 1) LCS(i,j) = LCS(i —1,j)
fO Read from M[i,j] ifi =0 Orj =0
.. if
LC%‘(L]) =< LCS(i—1,] — 1)4 i if X[i] = Y[/]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Save to M[i,j]

33

X = “alkjdflaksjdf”
Y = “lakjsdflkasjdIfs”
M = 2d array of len(X) rows and len(Y) columns, initialized to -1
def LCS(int i, int j):
returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y
memoization
if M[i,j] >-1:
return MJi,j]
#base case:
ifi==0o0rj==0:
ans=0
elif X[i] == Y[j]:
ans = LCS(i-1, j-1) + 1
else:
ans = max(LCS(i, j-1), LCS(i-1, j))
MI[i,j] = ans
return ans
print(LCS(len(X)+1, len(Y)+1)) # the answer for the entirety of X and Y

0 ifi=0o0rj=0
LCS(i,j) = LCS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem is the (optimal) solutions to a smaller one plus
one “decision”

* |dea:

1. ldentify the substructure of the problem

 What are the options for the “last thing” done? What subproblem comes from each?
2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

35

3. Solve in a Good Order

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

B |lR|lm|lolo|lo|lOo|
N[N R | R|[R|~=|lo|DNS
N[N|IN|[N|[R|[R|lo|RO
Blw|lw|N|N|R|O|lax
BB W[(IN|IN|FR|lO|[NS

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

W W ININ[FR|FR|O
W W INININ|IP-R|O

s B N R o B

Tofillincell (i,j)weneedcells (i —1,j —1),(i —1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference) 36

Run Time?

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X =

4

B |lR|lm|lolo|lo|lOo|
N[N R | R|[R|~=|lo|DNS
N[N|IN|[N|[R|[R|lo|RO
Blw|lw|N|N|R|O|lax
BB W[(IN|IN|FR|lO|[NS

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

W W ININ[FR|FR|O
W W INININ|IP-R|O

s B N R o B

Run Time: O(n - m) (for |X| =n, |Y| = m)

37

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T G A T

ro 0 1 2 3) 5 6 7
A ol o 0 0 Ow| O 0 0 0
T|1] o 0 1 1 P 1 1 1 1
G|2| o 0 1 1 1 1\ 2 2 2

cC 3| o 0 1 2 2 2 | 2 2

Al 4| o 1 1 2 2 2 \ 3 W 3

T 5| o 1 2 2 3 3 3 | a4

A 6| o 1 2 2 3 3 a |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 8

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(j) =~ LeS(i—1,j—1) + 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T G A T

ro 0 1 2 3 4 5 6 7
A 0| o 0 O 0 0 0 0 0
T 1] o 0 |a1l 1 1 1 1 1

G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 \ 2 € 2€1T 2 | 2 2
Al 4| o 1 1 2 2 2 \ 3 W 3
‘T 5] o 1 2 2 3 3 3)4

A 6| o 1 2 2 3 3 4 |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent *

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(j) =~ LeS(i—1,j—1) + 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T G A T

ro 0 1 2 3) 5 6 7
A 0| o 0 O 0 0 0 0 0
T|1] o 0 |a1l 1 1 1 1 1

G 2| o 0o |'1 1 1 2 2 2
C|3| o 0 1 ['A2 2 2 2 2

A 4| o 1 1 | 2 2 2 3 3

T| 5| o 1 2 2 3¢ 3 3 4
Ale| o 1 2 2 3 3 4€— 4

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 40

