CS 3100 Data Structures and Algorithms 2 Lecture 18: Seam Carving

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS 4th edition:

• Chapter 14

Announcements

- Upcoming dates
 - PA3 (Clustering) due October 29, 2023 at 11:59pm
 - PS4 (Dynamic Programming), due November 2, 2023 at 11:59pm
 - PA4 (Seam Carving) due November 12, 2023 at 11:59pm
 - Quizzes 3-4 (Greedy, Dynamic Programming) on November 9, 2023 in class
- Updated Late Policy!
 - You must submit an extension request **before** the deadline
 - Explain why need you need the extension (up to 48 hours past the deadline)
 - Acknowledge that you're getting an extension
 - The late deadline is not the real deadline \bigcirc
 - You may then take the additional 48 hours as needed
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Log Cutting

Given a log of length nA list (of length n) of prices P(P[i]) is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_1, ..., \ell_k$ such that: $\sum \ell_i = n$ to maximize $\sum P[\ell_i]$ Brute Force: $O(2^n)$

1. Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ 2. Save sub- $\frac{1}{Cut(0)} + P[n]$ solutions to memory! $Cut(n-\ell_k)$ ℓ_k best way to cut a log of length $n - \ell_k$ **Last Cut** 5

3. Select a Good Order for Solving Subproblems

Matrix Chaining

• Given a sequence of Matrices $(M_1, ..., M_n)$, what is the most efficient way to multiply them?

1. Identify the Recursive Structure of the Problem

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0 $Best(2,n) + r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min - Best(1,4) + Best(5,n) + r_1r_5c_n$ $Best(1, n - 1) + r_1 r_n c_n$

2. Save Subsolutions in Memory

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_i $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n-1) + r_1 r_n c_n$

3. Select a good order for solving subproblems

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?

• Method for image resizing that doesn't scale/crop the image

Seam Carving

• Method for image resizing that doesn't scale/crop the image

Cropping

• Removes a "block" of pixels

Cropped

Scaling

• Removes "stripes" of pixels

Scaled

Seam Carving

- Removes "least energy seam" of pixels
- <u>https://trekhleb.dev/js-image-carver/</u>

Carved

Seam Carving

• Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Seattle Skyline

Energy of a Seam

• Sum of the energies of each pixel

e(p) = energy of pixel p

- Many choices for pixel energy
 - E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
 - Particular choice doesn't matter, we use it as a "black box"
- Goal: find least-energy seam to remove

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Let S(i, j) = least energy seam from the bottom of the image up to pixel $p_{i,j}$

Finding the Least Energy Seam

Want to delete the least energy seam going from bottom to top, so delete:

 $\min_{k=1}^{m} (S(n,k))$

Computing S(n, k)

Assume we know the least energy seams for all of row n - 1(i.e. we know $S(n - 1, \ell)$ for all ℓ)

Computing S(n, k)

Assume we know the least energy seams for all of row n-1 (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing S(n, k)

Assume we know the least energy seams for all of row n-1(i.e. we know $S(n-1, \ell)$ for all ℓ) $S(n,k) = min - \begin{cases} S(n-1,k-1) + e(p_{n,k}) \\ S(n-1,k) + e(p_{n,k}) \\ S(n-1,k+1) + e(p_{n,k}) \end{cases}$ $p_{n,k}$ S(n,k) S(n-1,k) S(n-1,k-1) S(n-1,k+1)

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example: X = ATCTGAT Y = TGCATALCS = TCTA

Brute force: Compare every subsequence of X with Y $\Omega(2^n)$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:
 - 1. Identify the substructure of the problem
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> Case 1: X[i] = Y[j]X = ATCTGCGTY = TGCATATLCS(i, j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X=ATCTGCGT X=ATCTGCGA Y = TGCATATY = TGCATACLCS(i, j) = LCS(i, j - 1)LCS(i, j) = LCS(i - 1, j) $LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$ if i = 0 or j = 0

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:
 - 1. Identify the substructure of the problem
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> Case 1: X[i] = Y[j]X = ATCTGCGTY = TGCATATLCS(i, j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X=ATCTGCGT X=ATCTGCGA Y=TGCATAC Y = TGCATATLCS(i, j) = LCS(i - 1, j)LCS(i, j) = LCS(i, j - 1) $LCS(i,j) = - \begin{bmatrix} 0 & \text{Read from M[i,j]} & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if present} & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{bmatrix}$ Save to M[i,j]

33

X = "alkidflaksidf"

Y = "lakjsdflkasjdlfs"

```
M = 2d array of len(X) rows and len(Y) columns, initialized to -1
```

def LCS(int i, int j):

returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y # memoization

```
if M[i,j] > -1:
```

return M[i,j]

```
#base case:
            if i == 0 or i == 0:
                        ans = 0
            elif X[i] == Y[i]:
                        ans = LCS(i-1, j-1) + 1
            else:
                        ans = max( LCS(i, j-1), LCS(i-1, j) )
            M[i,j] = ans
            return ans
print(LCS(len(X)+1, len(Y)+1)) # the answer for the entirety of X and Y
              LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j]\\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:
 - 1. Identify the substructure of the problem
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j]\\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent