
CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming
Co-instructors: Robbie Hott and Tom Horton

Fall 2023
Readings in CLRS 4th edition:
• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 18: Seam Carving

Announcements

• Upcoming dates
• PA3 (Clustering) due October 29, 2023 at 11:59pm
• PS4 (Dynamic Programming), due November 2, 2023 at 11:59pm
• PA4 (Seam Carving) due November 12, 2023 at 11:59pm
• Quizzes 3-4 (Greedy, Dynamic Programming) on November 9, 2023 in class

• Updated Late Policy!
• You must submit an extension request before the deadline
• Explain why need you need the extension (up to 48 hours past the deadline)
• Acknowledge that you’re getting an extension

• The late deadline is not the real deadline J
• You may then take the additional 48 hours as needed

• Course email (comes to both professors and head TAs):

 cs3100@cshelpdesk.atlassian.net
2

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3

Log Cutting

4

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ!, … , ℓ" such that:
 ∑ℓ# = 𝑛
to maximize ∑𝑃[ℓ#] Brute Force: 𝑂(2$)

1. Identify Recursive Structure

5

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ!
𝐶𝑢𝑡(𝑛 − ℓ!)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

2. Save sub-
solutions to

memory!

3. Select a Good Order for Solving Subproblems

6

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]	
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

Matrix Chaining

7

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

• Given a sequence of Matrices (𝑀!, … ,𝑀"), what is the most
efficient way to multiply them?

𝑀" 𝑀$

1. Identify the Recursive Structure of the Problem

• In general:

8

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. Save Subsolutions in Memory

• In general:

9

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

10

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖

In Season 9 Episode 7 “The Slicer” of the hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated

argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
11https://www.youtube.com/watch?v=pSB3HdmLcY4

break

https://www.youtube.com/watch?v=pSB3HdmLcY4

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

13

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

14

Cropping

• Removes a “block” of pixels

15

Cropped

Scaling

• Removes “stripes” of pixels

16

Scaled

Seam Carving

• Removes “least energy seam” of pixels
• https://trekhleb.dev/js-image-carver/

17

Carved

https://trekhleb.dev/js-image-carver/

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

18

Cropped Scaled Carved

Seattle Skyline

19

Energy of a Seam

• Sum of the energies of each pixel
 𝑒 𝑝 = energy of pixel 𝑝

• Many choices for pixel energy
– E.g.: change of gradient (how much the color of this pixel differs from

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

• Goal: find least-energy seam to remove

20

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

21

Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 =	least energy seam from the bottom of the image up
to pixel 𝑝#,%

22

𝑝',)

Finding the Least Energy Seam

23

𝑝*,+

Want to delete the least energy seam going from bottom to top, so delete:

min
%

"&!
𝑆(𝑛, 𝑘)

𝑛

𝑚

Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

24

𝑝*,+

Known
through
𝑛 − 1

𝑚

Computing 𝑆(𝑛, 𝑘)

25

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

Computing 𝑆(𝑛, 𝑘)

26

S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,!)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

27

PA4!

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

28

PA4!

Longest Common Subsequence

29

Given two sequences 𝑋 and 𝑌,
find the length of their longest
common subsequence

Example:
𝑋	=	𝐴𝑇𝐶𝑇𝐺𝐴𝑇	
𝑌	=	𝑇𝐺𝐶𝐴𝑇𝐴	
𝐿𝐶𝑆	=	𝑇𝐶𝑇𝐴	

Brute force: Compare every
subsequence of 𝑋 with 𝑌
Ω(2$)

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

30

31

X = ATCTGCGT
Y = TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=ATCTGCGA
Y=TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=ATCTGCGT
Y=TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

32

1. Identify Recursive Structure

33

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=ATCTGCGA
Y=TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=ATCTGCGT
Y=TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwiseSave to M[i,j]

Read from M[i,j]
if present

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

X = ATCTGCGT
Y = TGCATAT

X = “alkjdflaksjdf”
Y = “lakjsdflkasjdlfs”
M = 2d array of len(X) rows and len(Y) columns, initialized to -1
def LCS(int i, int j):
 # returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y
 # memoization
 if M[i,j] > -1:
 return M[i,j]
 #base case:
 if i == 0 or j == 0:
 ans = 0
 elif X[i] == Y[j]:
 ans = LCS(i-1, j-1) + 1
 else:
 ans = max(LCS(i, j-1), LCS(i-1, j))
 M[i,j] = ans
 return ans
print(LCS(len(X)+1, len(Y)+1)) # the answer for the entirety of X and Y

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

35

3. Solve in a Good Order

36

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

37

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)

Reconstructing the LCS

38

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

39

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

40

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

