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• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming



How many ways are there to tile a 2×𝑛 board with 
dominoes?
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How many ways to 
tile this:

With these?

Warm Up



Warm Up
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Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1

How many ways are there to tile a 2×𝑛 board with dominoes?



Announcements

• Upcoming dates
– PS3 (Greedy Algorithms) due October 20, 2023 at 11:59pm
• PA3 (Clustering) due October 29, 2023 at 11:59pm

• Updated Late Policy!
– You must submit an extension request before the deadline
– Explain why need you need the extension (up to 48 hours past the deadline)
– Acknowledge that you’re getting an extension

• The late deadline is not the real deadline J
– You may then take the additional 48 hours as needed

• Course email (comes to both professors and head TAs):

  cs3100@cshelpdesk.atlassian.net
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How to compute 𝑇𝑖𝑙𝑒(𝑛)?
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Tile(n):
 if n < 2:
  return 1
 return Tile(n-1)+Tile(n-2)

Problem?



Recursion Tree
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Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2!) 



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory
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Initialize Memory M
Tile(n):
 if n < 2:
  return 1
 if M[n] is filled:
  return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

M

0

1

2

3

4

5

6

Technique: “memoization” (note no “r”)



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”
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Initialize Memory M
Tile(n):
 if n < 2:
  return 1
 if M[n] is filled:
  return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller 

ones
• Idea:

1. Identify recursive structure of the problem
• What is the “last thing” done?

9𝑛 − 1 𝑛 − 2



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller 

ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory

10



Generic Divide and Conquer Solution

def myDCalgo(problem):
 

 if baseCase(problem):
  solution = solve(problem)

  return solution
 for subproblem of problem:    # After dividing
  subsolutions.append(myDCalgo(subproblem))
 solution = Combine(subsolutions)
 
 return solution

11



Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
 if mem[problem] not blank:
  return mem[problem]
 if baseCase(problem):
  solution = solve(problem)
  mem[problem] = solution
  return solution
 for subproblem of problem:
  subsolutions.append(myDPalgo(subproblem))
 solution = OptimalSubstructure(subsolutions)
 mem[problem] = solution
 return solution

12



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”

13

Initialize Memory M
Tile(n):
 if n < 2:
  return 1
 if M[n] is filled:
  return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Recursive calls happen in a predictable order



Better 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”

14

Tile(n):
 Initialize Memory M
 M[0] = 1
 M[1] = 1
 for i = 2 to n:
  M[i] = M[i-1] + M[i-2]
 return M[n]

M

0

1

2

3

4

5

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

15



Log Cutting

17

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃  (𝑃[𝑖] is the price of a cut of size 𝑖) 
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ", … , ℓ#  such that:
 ∑ℓ$ = 𝑛 
to maximize ∑𝑃[ℓ$] Brute Force: 𝑂(2!)



Greedy Algorithm

18

Greedy: Lengths: 5, 1
 Profit: 51

Better: Lengths: 2, 4
 Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

• Greedy algorithms build a solution by picking the best option 
“right now”
– Select the most profitable cut first



Greedy Algorithm

• Greedy algorithms build a solution by picking the best option 
“right now”
– Select the “most bang for your buck” 
• (best price / length ratio)

19

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1
 Profit: 51

Better: Lengths: 2, 4
 Profit: 54

50

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

20



1. Identify Recursive Structure

21

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ%
𝐶𝑢𝑡(𝑛 − ℓ%)

𝐶𝑢𝑡 𝑛 = max  
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1  
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2  
… 
𝐶𝑢𝑡 0 + 𝑃[𝑛] 

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

22



3. Select a Good Order for Solving Subproblems

23

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 0 = 0  

0



3. Select a Good Order for Solving Subproblems
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10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 1 = 𝐶𝑢𝑡 0 + 𝑃[1]  

1



3. Select a Good Order for Solving Subproblems
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10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 2 = max  𝐶𝑢𝑡 1 + 𝑃 1  
𝐶𝑢𝑡 0 + 𝑃 2  

2



3. Select a Good Order for Solving Subproblems
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10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 3 = max  𝐶𝑢𝑡 2 + 𝑃 1  
𝐶𝑢𝑡 1 + 𝑃 2  
𝐶𝑢𝑡 0 + 𝑃[3] 

3



3. Select a Good Order for Solving Subproblems

27

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max  

𝐶𝑢𝑡 3 + 𝑃[1]	
𝐶𝑢𝑡 2 + 𝑃 2  
𝐶𝑢𝑡 1 + 𝑃 3  
𝐶𝑢𝑡 0 + 𝑃[4] 

4



Log Cutting Pseudocode
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Initialize Memory C
Cut(n):
 C[0] = 0
 for i=1 to n:  // log size
  best = 0
  for j = 1 to i: // last cut
   best = max(best, C[i-j] + P[j])
  C[i] = best
 return C[n]

Run Time: 𝑂(𝑛!) 



How to find the cuts?

• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack

29



Remember the choice made
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Initialize Memory C, Choices
Cut(n):
 C[0] = 0
 for i=1 to n:
  best = 0
  for j = 1 to i:
   if best < C[i-j] + P[j]:
    best = C[i-j] + P[j]
    Choices[i]=j
  C[i] = best
 return C[n]

Gives the size 
of the last cut



Reconstruct the Cuts

31

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

Example to demo 
Choices[] only.
Profit of 20 is not 
optimal!



Backtracking Pseudocode

i = n
while i > 0:
 print Choices[i]
 i = i – Choices[i]
 

32



Our Example: Getting Optimal Solution

i    0 1 2 3 4 5 6 7 8 9 10
C[i] 0 1 5 8 10 13 17 18 22 25 30

Choice[i] 0 1 2 3 2 2 6 1 2 3 10

33

• If n were 5
• Best score is 13
• Cut at Choice[n]=2, then cut at

Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
• If n were 7
• Best score is 18
• Cut at 1, then cut at 6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

34



Matrix Chaining

35

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

• Given a sequence of Matrices (𝑀", … ,𝑀#), what is the most 
efficient way to multiply them?

𝑀" 𝑀$



Order Matters!

• 𝑀"×𝑀! ×𝑀$ 
– uses 𝑐" ⋅ 𝑟" ⋅ 𝑐% + c% ⋅ 𝑟" ⋅ 𝑐& operations

36

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#
𝑟#

𝑐#

×𝑀"

𝑟!

𝑐"

𝑐1 = 𝑟2
𝑐2 = 𝑟3



Order Matters!

• 𝑀"×(𝑀!×𝑀$) 
– uses c" ⋅ r" ⋅ 𝑐& + (c% ⋅ 𝑟% ⋅ 𝑐&) operations

37

𝑟"

𝑐#

𝑐1 = 𝑟2
𝑐2 = 𝑟3

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#
𝑟#

𝑐#

×𝑀"



Order Matters!

• 𝑀"×𝑀! ×𝑀$ 
– uses 𝑐" ⋅ 𝑟" ⋅ 𝑐% + c% ⋅ 𝑟" ⋅ 𝑐& operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• 𝑀"×(𝑀!×𝑀$) 
– uses 𝑐" ⋅ 𝑟" ⋅ 𝑐& + (c% ⋅ 𝑟% ⋅ 𝑐&) operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160

38

𝑐1 = 𝑟2
𝑐2 = 𝑟3

𝑐1 = 10
𝑐2 = 20
𝑐3 = 8
𝑟1 = 7
𝑟2 = 10
𝑟3 = 20

𝑀1 = 7×10
𝑀2 = 10×20
𝑀3 = 20×8



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

39



1. Identify the Recursive Structure of the Problem

40

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4



1. Identify the Recursive Structure of the Problem

41

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟1𝑟2𝑐5

𝑐$

𝑟"



1. Identify the Recursive Structure of the Problem
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𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟1𝑟2𝑐5

𝑐$

𝑟#

𝑐"

𝑟!

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟1𝑟3𝑐5



1. Identify the Recursive Structure of the Problem

43

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟1𝑟2𝑐5

𝑐#

𝑟!

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟1𝑟3𝑐5
𝐵𝑒𝑠𝑡 1,3 + 𝑟1𝑟5𝑐5



1. Identify the Recursive Structure of the Problem

• In general:

44

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟1𝑟2𝑐4
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟1𝑟3𝑐4
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟1𝑟5𝑐4
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟1𝑟8𝑐4
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟1𝑟4𝑐4

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

%:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟%;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

45



2. Save Subsolutions in Memory

• In general:

46

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟1𝑟2𝑐4
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟1𝑟3𝑐4
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟1𝑟5𝑐4
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟1𝑟8𝑐4
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟1𝑟4𝑐4

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

%:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟%;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

47



3. Select a good order for solving subproblems

• In general:

48

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟1𝑟2𝑐4
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟1𝑟3𝑐4
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟1𝑟5𝑐4
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟1𝑟8𝑐4
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟1𝑟4𝑐4

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

%:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟%;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



3. Select a good order for solving subproblems

49

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

%:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟%;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
𝑗 =

= 𝑖
0

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6
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30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

%:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟%;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

𝐵𝑒𝑠𝑡 1,2 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 2 + 𝑟1𝑟2𝑐2

0 15750

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems
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𝐵𝑒𝑠𝑡 1,3 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 3 + 𝑟1𝑟2𝑐3
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𝑟1𝑟2𝑐3 = 30 ⋅ 35 ⋅ 5 = 5250
𝑟1𝑟3𝑐3 = 30 ⋅ 15 ⋅ 5 = 2250
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3. Select a good order for solving subproblems

7875

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding 
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖
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Run Time

1. Initialize 𝐵𝑒𝑠𝑡[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right, 

fill in each cell using:
1. 𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. 𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

%:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟%;1𝑐7
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Θ(𝑛2) cells in the Array

Θ(𝑛) options for each cell

Θ(𝑛3) overall run time

Each “call” to Best() is a 
O(1) memory lookup



Backtrack to find the best order
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“remember” which choice of 𝑘 was the minimum at each cell
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Storing and Recovering Optimal Solution

• Maintain table Choice[i,j] in addition to Best table
– Choice[i,j] = k means the best “split” was right after Mk

– Work backwards from value for whole problem, Choice[1,n]
– Note: Choice[i,i+1] = i because there are just 2 matrices 

• From our example:
– Choice[1,6] = 3.   So [M1 M2 M3] [M4 M5 M6]
– We then need Choice[1,3] = 1.   So [(M1) (M2 M3)]
– Also need Choice[4,6] = 5.  So [(M4 M5) M6]
– Overall: [(M1) (M2 M3)] [(M4 M5) M6]
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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