CS 3100

Data Structures and Algorithms 2 Lecture 15: Huffman Encoding

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 16

Announcements

- Upcoming dates
- PS3 (Greedy Algorithms) due October 20, 2023 at 11:59pm
- PA3 (Clustering) due October 29, 2023 at 11:59pm
- Course email (comes to both professors and head TAs):
cs3100@cshelpdesk.atlassian.net

Message Encoding

Problem: need to electronically send a message to two people at a distance.
Channel for message is binary (either on or off)

How efficient is this?

wiggle wiggle wiggle like a gypsy queen wiggle wiggle wiggle all dressed in green

Each character requires 4 bits

$$
\ell_{c}=4
$$

Cost of encoding:
$B\left(T,\left\{f_{c}\right\}\right)=\sum_{\text {character } c} \ell_{c} f_{c}=68 \cdot 4=272$

Better Solution: Allow for different characters to have different-size encodings (high frequency \rightarrow short code)

Character

Freque	Encodin
a: 2	0000
d: 2	0001
e: 13	0010
g: 14	0011
i: 8	0100
k: 1	0101
l: 9	0110
n: 3	0111
p: 1	1000
q: 1	1001
r: 2	1010
s: 3	1011
u: 1	1100
w: 6	1101
y: 2	1110

More efficient coding

Prefix-Free Code

A prefix-free code is codeword table T such that for any two characters c_{1}, c_{2}, if $c_{1} \neq c_{2}$ then $\operatorname{code}\left(c_{1}\right)$ is not a prefix of $\operatorname{code}\left(c_{2}\right)$

g	0
e	10
l	110
i	1110
w	11110
...	...

1111011100011010

w i ggle

Binary Trees = Prefix-free Codes

I can represent any prefix-free code as a binary tree I can create a prefix-free code from any binary tree

Goal: Shortest Prefix-Free Encoding

Input: A set of character frequencies $\left\{f_{c}\right\}$
Output: A prefix-free code T which minimizes

$$
B\left(T,\left\{f_{c}\right\}\right)=\sum_{\text {character } c} \ell_{c} f_{c}
$$

Huffman Coding!!

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Subproblem of size $n-1$!

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Exchange argument

Shows correctness of a greedy algorithm Idea:

- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
- Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
- Optimal Substructure argument

Showing Huffman is Optimal

First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)

T^{\prime} is a "better" tree than T, because all codes in red subtree are shorter in T^{\prime}, without creating any longer codes

Huffman Exchange Argument

Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings

- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 1: Consider some optimal tree $T_{\text {opt }}$. If c_{1}, c_{2} are siblings in this tree, then claim holds

Huffman Exchange Argument

Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings

- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 2: Consider some optimal tree $T_{o p t}$, in which c_{1}, c_{2} are not siblings Let a, b be the two characters of lowest
 depth that are siblings (Why must they exist?)

Idea: show that swapping c_{1} with a does not increase cost of the tree.
Similar for c_{2} and b
Assume: $f_{c 1} \leq f_{a}$ and $f_{c 2} \leq f_{b}$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$
$B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a}$

$$
B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}
$$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$

$$
\begin{aligned}
B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1} & +f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1} \\
& \geq 0 \Rightarrow T^{\prime} \text { optimal } \\
B\left(T_{o p t}\right)-B\left(T^{\prime}\right) & =C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a}-\left(C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}\right) \\
& =f_{c 1} \ell_{c 1}+f_{a} \ell_{a}-f_{c 1} \ell_{a}-f_{a} \ell_{c 1} \\
& =f_{c 1}\left(\ell_{c 1}-\ell_{a}\right)+f_{a}\left(\ell_{a}-\ell_{c 1}\right) \\
& =\left(f_{a}-f_{c 1}\right)\left(\ell_{a}-\ell_{c 1}\right)
\end{aligned}
$$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$

$$
B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}
$$

Topt

$$
\begin{gathered}
B\left(T_{o p t}\right)-B\left(T^{\prime}\right)=\left(f_{a}-f_{c 1}\right)\left(\ell_{a}-\ell_{c 1}\right) \\
\geq 0 \quad \geq 0 \quad a \\
B\left(T_{o p t}\right)-B\left(T^{\prime}\right) \geq 0 \\
T^{\prime} \text { is also optimal! }
\end{gathered}
$$

Case 2:Repeat to swap c_{2}, b !

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{2} with b does not increase cost of the tree.
Assume: $f_{c 2} \leq f_{b}$
$B\left(T^{\prime}\right)=C+f_{c 2} \ell_{c 2}+f_{b} \ell_{b}$

$$
B\left(T^{\prime \prime}\right)=C+f_{c 2} \ell_{b}+f_{b} \ell_{c 2}
$$

$$
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right)=\left(f_{b}-f_{c 2}\right)\left(\ell_{b}-\ell_{c 2}\right)
$$

$$
\geq 0 \quad \geq 0
$$

$$
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0
$$

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
- Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
- Optimal Substructure argument

Proving Optimal Substructure

Goal: show that if x is in an optimal solution, then the rest of the solution is an optimal solution to the subproblem.
Usually by Contradiction:

- Assume that x must be an element of my optimal solution
- Assume that solving the subproblem induced from choice x, then adding in x is not optimal
- Show that removing x from a better overall solution must produce a better solution to the subproblem

Huffman Optimal Substructure

Goal: show that if c_{1}, c_{2} are siblings in an optimal solution, then an optimal prefix free code can be found by using a new character with frequency $f_{c_{1}}+f_{c_{2}}$ and then making c_{1}, c_{2} its children.
By Contradiction:

- Assume that c_{1}, c_{2} are siblings in at least one optimal solution
- Assume that solving the subproblem with this new character, then adding in c_{1}, c_{2} is not optimal
- Show that removing c_{1}, c_{2} from a better overall solution must produce a better solution to the subproblem

Finishing the Proof

Show Recursive Substructure

- Show treating c_{1}, c_{2} as a new "combined" character gives optimal solution

Why does solving this smaller problem:

Give an optimal solution to this?:

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

F

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

If this is optimal

Then this is optimal

$$
B\left(T^{\prime}\right)=B(T)-f_{c 1}-f_{c 2}
$$

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Toward contradiction
Suppose T is not optimal
Let U be a lower-cost tree
$B(U)<B(T)$

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ
 optimal!

Optimal Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Bridge Crossing

Bridge Crossing

n friends need to cross a bridge in the dark, but only have one flashlight. In addition, the bridge can only hold the weight of two people at a time. Given the walking speeds of each person $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, give an algorithm that gets all n people across the bridge as quickly as possible.
${ }^{* *}$ Assume $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$
**If two people cross together, they walk at the slower person's speed

