
CS 3100
Data Structures and Algorithms 2

Lecture 15: Huffman Encoding

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Chapter 16

Announcements

• Upcoming dates
• PS3 (Greedy Algorithms) due October 20, 2023 at 11:59pm
• PA3 (Clustering) due October 29, 2023 at 11:59pm

• Course email (comes to both professors and head TAs):

 cs3100@cshelpdesk.atlassian.net

2

Message Encoding

Problem: need to electronically send a message to two
people at a distance.
Channel for message is binary (either on or off)

3

𝑚

How efficient is this?

Each character requires 4 bits
ℓ! = 4

4

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓! = &
!"#$#!%&$!

ℓ!𝑓! = 68 ⋅ 4 = 272

Better Solution: Allow for different
characters to have different-size encodings
(high frequency → short code)

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

More efficient coding

5

𝐵 𝑇, 𝑓! = &
!"#$#!%&$!

ℓ!𝑓!

When this is big

Make this small

Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Prefix-Free Code

A prefix-free code is codeword table 𝑇 such that for any
two characters 𝑐", 𝑐#, if 𝑐" ≠ 𝑐# then 𝑐𝑜𝑑𝑒(𝑐") is not a
prefix of 𝑐𝑜𝑑𝑒(𝑐#)

6

g
e
l
i
w
…

0
10
110
1110
11110
…

1111011100011010
w i gg l e

Binary Trees = Prefix-free Codes

I can represent any prefix-free code as a binary tree
I can create a prefix-free code from any binary tree

7

g
e
l
i
w
…

0
10
110
1110
11110
…

g

e

l

i

w

0

0

0

0

0

1

1

1

1

g e l i w

g
e
l
i
w
…

00
01
10
110
111
…

0

0 0
0

1

1
1

1

Goal: Shortest Prefix-Free Encoding

Input: A set of character frequencies {𝑓!}
Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓! = (
!"#$#!%&$!

ℓ!𝑓!

8

Huffman Coding!!

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

9

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

10

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

11

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

12

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

13

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

14

G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

15

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1

Huffman Algorithm
Choose the least frequent pair, combine into
a subtree

16

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no

worse by replacing it with the same item from my sandwich”

17

Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
• Optimal Substructure argument

18

Showing Huffman is Optimal

First Step: Show any optimal tree is “full” (each node has either 0 or 2
children)

19

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in
red subtree are shorter in 𝑇′, without creating
any longer codes

Huffman Exchange Argument
Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is an optimal
prefix-free code s.t. 𝑐", 𝑐# are siblings
• i.e. codes for 𝑐(, 𝑐) are the same length and differ only by their last bit

20𝑐(

𝑇!"#

𝑐)

Case 1: Consider some optimal tree 𝑇*+%. If 𝑐(, 𝑐) are siblings in this
tree, then claim holds

Huffman Exchange Argument

21

𝑐)

𝑎

𝑐(

𝑇!"#

𝑏

Case 2: Consider some optimal tree 𝑇*+%, in which 𝑐(, 𝑐) are not siblings

Let 𝑎, 𝑏 be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping 𝑐(with 𝑎 does
not increase cost of the tree.
Similar for 𝑐) and 𝑏
Assume: 𝑓!(≤ 𝑓# and 𝑓!) ≤ 𝑓,

Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is an optimal
prefix-free code s.t. 𝑐", 𝑐# are siblings
• i.e. codes for 𝑐(, 𝑐) are the same length and differ only by their last bit

Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

22

𝑐)

𝑎

𝑐(

𝑇!"#

𝑏

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree
𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐(with 𝑎 does not increase cost of the tree.
Assume: 𝑓!(≤ 𝑓#

𝑐)

𝑐(

𝑎

𝑇′

𝑏

𝐵 𝑇*+% = 𝐶 + 𝑓!(ℓ!(+ 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!(ℓ# + 𝑓#ℓ!(

Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

23

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐(with 𝑎 does not increase cost of the tree.
Assume: 𝑓!(≤ 𝑓#

𝐵 𝑇*+% = 𝐶 + 𝑓!(ℓ!(+ 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!(ℓ# + 𝑓#ℓ!(

𝐵 𝑇*+% − 𝐵 𝑇- = 𝐶 + 𝑓!(ℓ!(+ 𝑓#ℓ# − (𝐶 + 𝑓!(ℓ# + 𝑓#ℓ!()

= 𝑓!(ℓ!(+ 𝑓#ℓ# − 𝑓!(ℓ# − 𝑓#ℓ!(
= 𝑓!((ℓ!(− ℓ#) + 𝑓#(ℓ# − ℓ!()
= (𝑓#−𝑓!()(ℓ# − ℓ!()

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree

Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

24

𝑐)

𝑎

𝑐(

𝑇!"#

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐(with 𝑎 does not increase cost of the tree.
Assume: 𝑓!(≤ 𝑓#

𝑐)

𝑐(

𝑎

𝑇′

𝑏

𝐵 𝑇*+% = 𝐶 + 𝑓!(ℓ!(+ 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!(ℓ# + 𝑓#ℓ!(

𝐵 𝑇*+% − 𝐵 𝑇- = (𝑓#−𝑓!()(ℓ# − ℓ!()
≥ 0 ≥ 0

𝐵 𝑇*+% − 𝐵 𝑇- ≥ 0
𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree

Case 2:Repeat to swap 𝑐&, 𝑏!

25

𝑐)

𝑐(

𝑎

𝑇′

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐) with 𝑏 does not increase cost of the tree.
Assume: 𝑓!) ≤ 𝑓,

𝑏

𝑐(

𝑎

𝑇′′

𝑐)

𝐵 𝑇′ = 𝐶 + 𝑓!)ℓ!) + 𝑓,ℓ, 𝐵 𝑇′′ = 𝐶 + 𝑓!)ℓ, + 𝑓,ℓ!)

𝐵 𝑇′ − 𝐵 𝑇-- = (𝑓,−𝑓!))(ℓ, − ℓ!))
≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇-- ≥ 0
𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree

Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
• Optimal Substructure argument

26

Proving Optimal Substructure

Goal: show that if 𝑥 is in an optimal solution, then the rest of the
solution is an optimal solution to the subproblem.
Usually by Contradiction:
• Assume that 𝑥 must be an element of my optimal solution
• Assume that solving the subproblem induced from choice 𝑥, then adding in 𝑥

is not optimal
• Show that removing 𝑥 from a better overall solution must produce a better

solution to the subproblem

Huffman Optimal Substructure

Goal: show that if 𝑐", 𝑐# are siblings in an optimal solution, then an
optimal prefix free code can be found by using a new character with
frequency 𝑓!! + 𝑓!" and then making 𝑐", 𝑐# its children.
By Contradiction:
• Assume that 𝑐(, 𝑐) are siblings in at least one optimal solution
• Assume that solving the subproblem with this new character, then adding in
𝑐(, 𝑐) is not optimal
• Show that removing 𝑐(, 𝑐) from a better overall solution must produce a

better solution to the subproblem

Finishing the Proof

Show Recursive Substructure
• Show treating 𝑐(, 𝑐) as a new “combined” character gives optimal solution

29

Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐! 𝑐"

𝑐! 𝑐"

𝜎

Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

30

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

31

𝑇

𝑐(

𝜎

𝑐)

𝑇′
𝜎

If this is optimal Then this is optimal

𝑓$ = 𝑓!" + 𝑓!#

𝐵 𝑇% = 𝐵 𝑇 − 𝑓!" − 𝑓!#

ℓ!" = ℓ$ + 1
ℓ!# = ℓ$ + 1

Substructure

32

𝑇

𝑐(

𝜎

𝑐)

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐(

𝑈

𝑐)

Toward contradiction

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

Substructure

33

𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐(

𝑈

𝑐)

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓!" − 𝑓!#
< 𝐵 𝑇 − 𝑓!" − 𝑓!#
= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is
optimal!

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

Optimal Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

34

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐(

𝜎
𝑐)

𝑐(

𝑈

𝑐)

>
>Contradiction!

Bridge Crossing

35

Bridge Crossing

n friends need to cross a bridge in the dark, but only have one
flashlight. In addition, the bridge can only hold the weight of two
people at a time. Given the walking speeds of each person 𝑆 =
{𝑠", 𝑠#, … , 𝑠&}, give an algorithm that gets all n people across the bridge
as quickly as possible.

**Assume 𝑠" ≤ 𝑠# ≤ ⋯ ≤ 𝑠&
**If two people cross together, they walk at the slower person’s speed

36

