CS 3100

Data Structures and Algorithms 2

Lecture 15: Huffman Encoding

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4t edition:
 Chapter 16

Announcements

 Upcoming dates
 PS3 (Greedy Algorithms) due October 20, 2023 at 11:59pm
 PA3 (Clustering) due October 29, 2023 at 11:59pm

* Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Message Encoding

Problem: need to electronically send a message to two
people at a distance.

Channel for message is binary (either on or off)

How efficient is this?

. _ _ _ Character

wiggle wiggle wiggle like a gypsy queen Frequency Encoding

wiggle wiggle wiggle all dressed in green a: 2 0000

: : d: 2 0001

Each character requires 4 bits e 13 0010

. =4 g: 14 0011

1: 8 0100

Cost of encoding: <1 0101

: 9 0110

B(T,{f.}) = z 0.f. =68 4=272 n: 3 0111

character c p:1 1000

g:1 1001

r: 2 1010

, . s: 3 1011

Better Solution: Allow for different u: 1 1100

characters to have different-size encodings W: 6 1101
(high frequency - short code) y: 2 1110 |4

More efficient coding

0.14 When this is big

0.12

BUL D=) L

character c

0.1

0.08 Make this small

0.06

Character Frequency

0.04

0.02

0

etaoinshrdlcumwfgypbvk |xaqz

e |

Prefix-Free Code

A prefix-free code is codeword table T such that for any

two characters ¢y, ¢,, if c; # ¢, then code(cy) is not a
prefix of code(c,)

g O 1111011100011010
e 10 w | ggl e
| 110

i 1110

w 11110

Binary Trees = Prefix-free Codes

| can represent any prefix-free code as a binary tree

| can create a prefix-free code from any binary tree

s — — o 09

00
01
10
110
111

Goal: Shortest Prefix-Free Encoding

Input: A set of character frequencies {f,.}
Output: A prefix-free code T which minimizes

BUL D=) Lk

character c

Huffman Coding!!

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:13I L:9 I 1:8 IW:GI N:3 I S:3 I A:2 I D:2 I R:2 I Y:2 I K:1 I P:1 : Q:1 I U:1:

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Yzﬁ%l I P:1

Subproblem of sizen — 1!

10

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Y:#l_!_%

11

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:13I L:9 I :8 IW:6

|

N:3 I S:3 I A:2 I D:2 | R:2 I Y:2]
1

12

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:13I L:9 I :8 IW:B

13

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:131 L:9 I :8 IW:6

14

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

[G:14 I E:13I L:9 I 1:8 IW#

1 1

R:2 Y:2 A:2 D:2

15

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree 0

0]

G:14 E:13

0A

L:9 I8

.JA e

A:2 D:2 Q1 U:1

16

Exchange argument

Shows correctness of a greedy algorithm

ldea:

* Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
* How to show my sandwich is at least as good as yours:

* Show: “l can remove any item from your sandwich, and it would be no
worse by replacing it with the same item from my sandwich”

Showing Huffman is Optimal

Overview:

* Show that there is an optimal tree in which the least
frequent characters are siblings
* Exchange argument
* Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
* Optimal Substructure argument

18

Showing Huffman is Optimal

First Step: Show any optimal tree is “full” (each node has either O or 2
children)

T'is a “better” tree than T, because all codes in
red subtree are shorter in T, without creating
any longer codes

19

Huffman Exchange Argument

Claim:if ¢y, ¢, are the least-frequent characters, then there is an optimal
prefix-free code s.t. ¢4, ¢, are siblings

* i.e. codes for cq, c; are the same length and differ only by their last bit

Case 1: Consider some optimal tree Ty, If ¢1, €3 are siblings in this
tree, then claim holds

20

Huffman Exchange Argument

Claim:if ¢y, ¢, are the least-frequent characters, then there is an optimal

prefix-free code s.t. ¢4, ¢, are siblings
* i.e. codes for cq, c; are the same length and differ only by their last bit

Case 2: Consider some optimal tree Ty, in which ¢y, ¢c; are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

ldea: show that swapping ¢; with a does
not increase cost of the tree.

Similar for ¢, and b
Assume: f.q < foand f» < fp

21

Case 2: ¢y, ¢, are not siblings in T, ,;

* Claim: the least-frequent characters (cq, ¢,), are siblings in
some optimal tree
a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) = C + ferber + faba BT') = C+ ferta + fater

Case 2: c;, c, are not siblings in T,

* Claim: the least-frequent characters (c4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) =CH+ ff:1 T+ fafy B(T") =C+ feafa + fafc
> 0 = T’ optimal
B(Topt) —B(T") =C+ fe1ter + fala — (C + ferta + fatfcr)
= fe1ter + fata — ferfa — fatcr
= fe1(fe1 —4a) + falfa — c1)
= (fa—fe)Ea —¥c1)

23

Case 2: c;, c, are not siblings in T,

* Claim: the least-frequent characters (cq, ¢,), are siblings in
some optimal tree
a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) = C + ferler + futa B(I') = C+ ferta + fater

B(Topt) — B(T") = (fa—fe1) (Ba — £c1)
>0

=0

B(T,pt) —B(T") =0
T' is also optimal!

Case 2:Repeat to swap ¢,, b!

* Claim: the least-frequent characters (c4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢, with b does not increase cost of the tree.
Assume: f., < fp

B(T,)=C+fC2'€C2 +fb’£b B(T”)=C+f62£b+fb€C2

—
B(T') —B(T") = (fo—f2) (8 — £c2)

B(T')—B(T") =0

T" is also optimal! Claim holds!

Showing Huffman is Optimal

Overview:

* Show that there is an optimal tree in which the least
frequent characters are siblings
* Exchange argument
* Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
* Optimal Substructure argument

26

Proving Optimal Substructure

Goal: show that if x is in an optimal solution, then the rest of the
solution is an optimal solution to the subproblem.

Usually by Contradiction:
* Assume that x must be an element of my optimal solution

* Assume that solving the subproblem induced from choice x, then adding in x
is not optimal

* Show that removing x from a better overall solution must produce a better
solution to the subproblem

Huffman Optimal Substructure

Goal: show that if ¢4, ¢, are siblings in an optimal solution, then an
optimal prefix free code can be found by using a new character with
frequency f. + f., and then making c;, c; its children.

By Contradiction:

* Assume that ¢4, ¢, are siblings in at least one optimal solution

e Assume that solving the subproblem with this new character, then adding in
C1, C is not optimal

* Show that removing ¢4, ¢, from a better overall solution must produce a
better solution to the subproblem

Finishing the Proof

Show Recursive Substructure
* Show treating c¢, ¢, as a new “combined” character gives optimal solution

Why does solving this smaller problem:

e e el e

Give an optimal solution to this?:

e e L e

29

Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as children to o

[IIIIIIIIIIF%I

[IIIIIIIIIIIII

Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as children to o

If this is optimal Then this is optimal

B(T,):B(T)_fcl_fcz 31

Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as children to o

Toward contradiction

Suppose T is not optimal

Let U be a lower-cost tree
B(U) < B(T)

32

Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as children to o

B(U) < B(T)

B(U’) — B(U) _fcl _fcz
< B(T) _fcl _fcz
= B(T")

7 [

Contradicts optimality of T', so T is
optimall 33

Optimal Substructure

Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as children to o

Contradiction!

34

Bridge Crossing

Bridge Crossing

n friends need to cross a bridge in the dark, but only have one
flashlight. In addition, the bridge can only hold the weight of two
people at a time. Given the walking speeds of each person § =

{s1,S,, ..., S, }, give an algorithm that gets all n people across the bridge
as quickly as possible.

**Assume s; < 5, < - < 5,

**If two people cross together, they walk at the slower person’s speed

36

