
CS 3100
Data Structures and Algorithms 2
Lecture 11: Matrix Multiplication, Quickselect

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:

• Section 4.5

Announcements

• Upcoming dates
• PS2 due September 29 (Friday) at 11:59pm

• PA2 due October 8 (Sunday) at 11:59pm

• Quizzes 1 and 2 Thursday October 5 in class

• Course email (comes to both professors and head TAs):

 cs3100@cshelpdesk.atlassian.net

2

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively

• If the subproblems are “small”:
• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

When is this an
effective strategy?

[CLRS Chapter 4]

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

1
2

3

4

5

6

7

8

Closest Pair of Points

5

1
2

3

4

5

6

7

8

Given: A list of points

Return: Pair of points with
smallest distance apart

Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

LeftPoints RightPoints

?

Looks like another 𝑂 𝑛 log 𝑛
algorithm – combine step is still

too expensive

Closest Pair of Points: Divide and Conquer

Solution: Maintain additional
information in the recursion
• Minimum distance among pairs of

points in the list
• List of points sorted according to 𝑦-

coordinate

Sorting boundary points by 𝑦-
coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Listing Points in the Boundary

1
2

3

4

5

6

7

8

4

LeftPoints:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝑑1,5

Sorted Points: [3,7,5,1]

RightPoints:

Closest Pair: (4,6), 𝑑4,6

Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Boundary Points: 8,7,6,5,2

Both of these lists can be computed
by a single pass over the lists

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the boundary
(sorted by 𝑦-coordinate)

• Compare each point in boundary to 15
points above it and save the closest pair

• Output closest pair among left, right, and
boundary points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the boundary
(sorted by 𝑦-coordinate)

• Compare each point in boundary to 15
points above it and save the closest pair

• Output closest pair among left, right, and
boundary points

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem:
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)

Matrix Multiplication

12

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12

14 16 18

=
60 72 84

132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛3)

𝑛

𝑛

Lower Bound? Ω(𝑛2)

Matrix Multiplication Divide and Conquer

13

Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎1 𝑎2 𝑎3 𝑎4

𝑎5 𝑎6 𝑎7 𝑎8

𝑎9 𝑎10 𝑎11 𝑎12

𝑎13 𝑎14 𝑎15 𝑎16

𝐵 =

𝑏1 𝑏2 𝑏3 𝑏4

𝑏5 𝑏6 𝑏7 𝑏8

𝑏9 𝑏10 𝑏11 𝑏12

𝑏13 𝑏14 𝑏15 𝑏16

Divide:

Matrix Multiplication Divide and Conquer

14

Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎1 𝑎2 𝑎3 𝑎4

𝑎5 𝑎6 𝑎7 𝑎8

𝑎9 𝑎10 𝑎11 𝑎12

𝑎13 𝑎14 𝑎15 𝑎16

𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

𝐴𝐵 =
𝐴1,1𝐵1,1 + 𝐴1,2𝐵2,1 𝐴1,1𝐵1,2 + 𝐴1,2𝐵2,2

𝐴2,1𝐵1,1 + 𝐴2,2𝐵2,1 𝐴2,1𝐵1,2 + 𝐴2,2𝐵2,2

𝐵 =

𝑏1 𝑏2 𝑏3 𝑏4

𝑏5 𝑏6 𝑏7 𝑏8

𝑏9 𝑏10 𝑏11 𝑏12

𝑏13 𝑏14 𝑏15 𝑏16

𝐵1,1 𝐵1,2

𝐵2,1 𝐵2,2

Run time? 𝑇 𝑛 = 8𝑇
𝑛

2
+ 4

𝑛

2

2
Cost of
additions

Combine:

Matrix Multiplication Divide and Conquer

15

𝑇 𝑛 = 8𝑇
𝑛

2
+ 4

𝑛

2

2

𝑇 𝑛 = 8𝑇
𝑛

2
+ 𝑛2

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛2

𝑛log𝑏 𝑎 = 𝑛log2 8 = 𝑛3
Case 1!

𝑇 𝑛 = Θ(𝑛3)
Can we do better?

Matrix Multiplication Divide and Conquer

16

Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎1 𝑎2 𝑎3 𝑎4

𝑎5 𝑎6 𝑎7 𝑎8

𝑎9 𝑎10 𝑎11 𝑎12

𝑎13 𝑎14 𝑎15 𝑎16

𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

𝐴𝐵 =
𝐴1,1𝐵1,1 + 𝐴1,2𝐵2,1 𝐴1,1𝐵1,2 + 𝐴1,2𝐵2,2

𝐴2,1𝐵1,1 + 𝐴2,2𝐵2,1 𝐴2,1𝐵1,2 + 𝐴2,2𝐵2,2

𝐵 =

𝑏1 𝑏2 𝑏3 𝑏4

𝑏5 𝑏6 𝑏7 𝑏8

𝑏9 𝑏10 𝑏11 𝑏12

𝑏13 𝑏14 𝑏15 𝑏16

𝐵1,1 𝐵1,2

𝐵2,1 𝐵2,2

Idea: Use a Karatsuba-like technique on this

Strassen’s Algorithm

17

Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎1 𝑎2 𝑎3 𝑎4

𝑎5 𝑎6 𝑎7 𝑎8

𝑎9 𝑎10 𝑎11 𝑎12

𝑎13 𝑎14 𝑎15 𝑎16

𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

𝐵 =

𝑏1 𝑏2 𝑏3 𝑏4

𝑏5 𝑏6 𝑏7 𝑏8

𝑏9 𝑏10 𝑏11 𝑏12

𝑏13 𝑏14 𝑏15 𝑏16

𝐵1,1 𝐵1,2

𝐵2,1 𝐵2,2

Calculate:
𝑄1 = 𝐴1,1 + 𝐴2,2 (𝐵1,1 + 𝐵2,2)

𝑄2 = 𝐴2,1 + 𝐴2,2 𝐵1,1

𝑄3 = 𝐴1,1(𝐵1,2 − 𝐵2,2)

𝑄4 = 𝐴2,2(𝐵2,1 − 𝐵1,1)

𝑄6 = 𝐴2,1 − 𝐴1,1 (𝐵1,1 + 𝐵1,2)

𝑄5 = 𝐴1,1 + 𝐴1,2 𝐵2,2

𝑄7 = 𝐴1,2 − 𝐴2,2 (𝐵2,1 + 𝐵2,2)

𝐴𝐵 =
𝑄1 + 𝑄4 − 𝑄5 + 𝑄7 𝑄3 + 𝑄5

𝑄2 + 𝑄4 𝑄1 − 𝑄2 + 𝑄3 + 𝑄6

Find 𝐴𝐵:

7 Multiplications 18 Additions

𝑇 𝑛 = 7𝑇
𝑛

2
+ 18

𝑛2

4

Strassen’s Algorithm

18

𝑇 𝑛 = 7𝑇
𝑛

2
+

9

2
𝑛2

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9

2
𝑛2

𝑛log𝑏 𝑎 = 𝑛log2 7 ≈ 𝑛2.807
Case 1!

𝑇 𝑛 = Θ 𝑛log2 7 ≈ Θ(𝑛2.807)

19

𝑛3

𝑛log2 7

Is This the Fastest?

20

Best possible is still unknown

Best lower bound: Ω 𝑛2

Divide and Conquer Algorithms (Thus Far)

Mergesort

Naïve Multiplication

Karatsuba Multiplication

Closest Pair of Points

Strassen’s Algorithm

21

What they have in common:
 Divide: Very easy (i.e. 𝑂(1))
 Combine: More complex (Ω(𝑛))

Quicksort

Like Mergesort:
• Divide and conquer algorithm

• 𝑂(𝑛 log 𝑛) run time (on expectation)

Unlike Mergesort:
• Divide step is the hard part

• Typically faster than Mergesort (often is the basis of sorting algorithms in
standard library implementations)

22

Quicksort

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element 𝑝, Partition(𝑝)

Conquer: recursively sort left and right sublists

Combine: nothing!

23

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

24

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Partition Procedure

8 5 7 3 12 10 1 2 4 9 6 11

Initialize two pointers Begin and End

Partition Procedure

26

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11 Swap!

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

Partition Procedure

27

Swap!

8 5 7 3 11 10 1 2 4 9 6 12 Swap!

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12 Swap!

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

Partition Procedure

28

Swap!

8 5 7 3 6 9 1 2 4 10 11 12 Swap!

8 5 7 3 6 4 1 2 9 10 11 12

8 5 7 3 6 4 1 2 9 10 11 12

8 5 7 3 6 4 1 2 9 10 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

Partition Procedure

8 5 7 3 6 4 1 2 9 10 11 12

Remaining item: where do we place the pivot?

8 5 7 3 6 4 1 2 9 10 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

Partition Procedure

8 5 7 3 6 4 1 2 9 10 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position

2 5 7 3 6 4 1 8 9 10 11 12

8 5 7 3 6 4 1 2 9 10 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

Partition Procedure

8 5 7 3 6 4 1 2 9 10 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left

Partition Procedure Summary

1. Choose the pivot 𝑝 to be the first element of the list

2. Initialize two pointers Begin (just after 𝑝), and End (at end of list)

3. While Begin < End:
• If value of Begin < 𝑝, advance Begin to the right

• Otherwise, swap value of Begin value with value of End value, and advance
End to the left

4. If pointers meet at element < 𝑝: swap 𝑝 with pointer position

5. Otherwise, if pointers meet at element > 𝑝: swap 𝑝 with value to
the left

32

Run time? Θ(𝑛)

Conquer Step

33

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

Then we divide in half each time

34

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

If the pivot is the median:

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time (Worst-Case)

Then we shorten by 1 each time

35

If the pivot is the extreme (min/max):

𝑇 𝑛 = 𝑇(𝑛 − 1) + 𝑛

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

= 𝑛 + 𝑛 − 1 + ⋯ + 2 + 1

=
𝑛 𝑛 + 1

2
= Θ 𝑛2

Quicksort on a Nearly Sorted List

Then we shorten by 1 each time

36

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

First element always yields unbalanced pivot

𝑇 𝑛 = Θ 𝑛2

How to Choose the Pivot?

37

Good choice: Θ 𝑛 log 𝑛

Bad choice: Θ 𝑛2

Good Pivot

What makes a good pivot?
• Roughly even split between left and right

• Ideally: median

Can we find median in linear time?
• Yes! Quickselect algorithm

38

Quickselect Algorithm

Algorithm to compute the 𝑖th order statistic
• 𝑖th smallest element in the list

• 1st order statistic: minimum

• 𝑛th order statistic: maximum

• Τ(𝑛 2)th order statistic: median

39

Quickselect Algorithm

Finds 𝑖th order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index 𝑖

Divide: select pivot element 𝑝, Partition(𝑝)

Conquer:
• if 𝑖 = index of 𝑝, then we are done and return 𝑝

• if 𝑖 < index of 𝑝 recurse left. Otherwise, recurse right

Combine: Nothing!

40

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

41

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Conquer Step

42

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Correct position of 𝑝

Recurse on sublist that contains index 𝑖

(add index of the pivot to 𝑖 if recursing right)

Quickselect Run Time (Optimistic)

Then we divide in half each time

43

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

If the pivot is the median:

𝑇 𝑛 = 𝑇 Τ𝑛 2 + 𝑛 = Θ(𝑛)

Quickselect Run Time (Worst-Case)

Then we shorten by 1 each time

44

If the pivot is the extreme (min/max):

𝑇 𝑛 = 𝑇(𝑛 − 1) + 𝑛

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

= Θ 𝑛2

How to Choose the Pivot?

45

Good choice: Θ 𝑛

Bad choice: Θ 𝑛2

Good Pivot

What makes a good pivot?
• Roughly even split between left and right

• Ideally: median

46

But this is the problem that
Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

Good Pivot

Decent pivot: both sides of Pivot >30%

47

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than ≈30% of elements and less than ≈30%
of the elements

Main idea: break list into blocks, find the median of each blocks, use the
median of those medians

48

Median of Medians

1. Break list into blocks of size 5

49

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Median of Medians

50

<
<

<
<

<
<

<
<

<
<

<
<

< <
<

<
<

<
<

<
<

< <

Each chunk sorted, chunks ordered by their medians

MedianofMedians
is larger than all

of these

𝑛

5

5

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Median of Medians

51

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

Τ𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Number of lists to the “left”
Exclude list on the endpoint,

and “middle” list

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Median of Medians

52

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Τ𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Elements greater than
MedianofMedians:

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

53

𝑀 𝑛 + Θ(𝑛)

median of medians algorithm

partition algorithm

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right (with index 𝑖 − 𝑝)

Combine: Nothing!

54

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

𝑀 𝑛 + Θ(𝑛)

Median of Medians

1. Break list into blocks of size 5

55

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛

5

𝑀 𝑛 = 𝑆
𝑛

5
+ Θ(𝑛)

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right

Combine: Nothing!

56

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right

Combine: Nothing!

57

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑆

𝑛

5
+ Θ(𝑛) = Θ(𝑛)

Phew! Back to Quicksort

58

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

59

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ(𝑛)

𝑇 𝑛 = Θ(𝑛 log 𝑛)

A Worthwhile Choice?

Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) worst-case run-time

Approach has very large constants
• If you really want Θ(𝑛 log 𝑛), better off using MergeSort

More efficient approach: Random pivot
• Very small constant (very fast algorithm)

• Expected to run in Θ(𝑛 log 𝑛) time

• Why? Unbalanced partitions are very unlikely

60

Quicksort Running Time

61

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

If the pivot is always (Τ𝑛 10)th order statistic:

Quicksort Running Time

62

𝑛

𝑇(𝑛) = 𝑇 Τ𝑛 10 + 𝑇 Τ9𝑛 10 + Θ(𝑛)

Τ𝑛 10 Τ9𝑛 10

Τ𝑛 100 Τ9𝑛 100 Τ9𝑛 100 Τ81𝑛 100

… … … …

1
1

1
1

1

1
1

1

Θ 𝑛

Θ(log 𝑛)

Θ 𝑛

Θ 𝑛

Quicksort Running Time

63

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

= Θ 𝑛 log 𝑛

If the pivot is always (Τ𝑛 10)th order statistic:

This is true if the pivot is any Τ𝑛 𝑘 th order statistic for any
constant 𝑘 > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get Θ 𝑛 log 𝑛 running time)

Quicksort Running Time

Then we shorten by 𝑑 each time

64

1 5 2 3 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

= Θ(𝑛2)

What’s the probability of this occurring (for a random pivot)?

Probability of Always Choosing 𝒅𝐭𝐡 Order Statistic

We must consistently select pivot from within the first 𝑑 terms

65

Probability first pivot is among 𝑑 smallest:
𝑑

𝑛

Probability second pivot is among 𝑑 smallest:
𝑑

𝑛−𝑑

Probability all pivots are among 𝑑 smallest:

𝑑

𝑛
×

𝑑

𝑛 − 𝑑
×

𝑑

𝑛 − 2𝑑
× ⋯ ×

𝑑

2𝑑
× 1 =

𝑛

𝑑
×

𝑛

𝑑
− 1 × ⋯ × 1

−1

=
1
𝑛
𝑑

!

Very small probability!

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

We will focus on counting the number of comparisons

For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot
• Element 𝑖 only compared to element 𝑗 if one of them was the

pivot

66

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

67

1 2 3 4 5 6 7 8 9 10 11 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared

– Why?

– Every sorting algorithm must compare adjacent elements

Otherwise I would not know their order

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

68

1 2 3 4 5 6 7 8 9 10 11 12

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2

12
Assuming pivot is chosen

uniformly at random

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
 Then sublist 𝑖, 𝑖 + 1, … , 𝑗 will be in right sublist and will be

processed in future invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1, … , 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
 Then sublist 𝑖, 𝑖 + 1, … , 𝑗 will be in right sublist and will be

processed in future invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1, … , 𝑛

[𝑝 + 1, … , 𝑛] denotes the right
sublist (in some order) that we are

recursively sorting

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 2: Pivot greater than 𝑗
 Then sublist 𝑖, 𝑖 + 1, … , 𝑗 will be in left sublist and will be

processed in future invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 1, … , 𝑝

Case 3.1: Pivot contained in [𝑖 + 1, … , 𝑗 − 1]
 Then 𝑖 and 𝑗 are in different sublists and will never be

compared

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

Case 3.2: Pivot is either 𝑖 or 𝑗
 Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Case 1: Pivot less than 𝑖

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1, … , 𝑛

Case 2: Pivot greater than 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 1, … , 𝑝

Case 3: Pivot in 𝑖, 𝑖 + 1, … , 𝑗

Pr we compare 𝑖 and 𝑗 = Pr 𝑖 or 𝑗 is selected as pivot =
2

𝑗 − 𝑖 + 1

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

Probability of comparing element 𝑖 with element 𝑗:

Pr we compare 𝑖 and 𝑗 =
2

𝑗 − 𝑖 + 1

75

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

Probability of comparing element 𝑖 with element 𝑗:

Pr we compare 𝑖 and 𝑗 =
2

𝑗 − 𝑖 + 1

Expected number of comparisons:

76

Substitution:
𝑘 = 𝑗 − 𝑖

𝑖=1

𝑛−1

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1
=

𝑖=1

𝑛−1

𝑘=1

𝑛−𝑖
2

𝑘 + 1
< 2

𝑖=1

𝑛−1

𝑘=1

𝑛−𝑖
1

𝑘
< 2

𝑖=1

𝑛−1

𝑘=1

𝑛
1

𝑘

1

𝑘 + 1
<

1

𝑘

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

77

Substitution:
𝑘 = 𝑗 − 𝑖

𝑖=1

𝑛−1

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1
=

𝑖=1

𝑛−1

𝑘=1

𝑛−𝑖
2

𝑘 + 1
< 2

𝑖=1

𝑛−1

𝑘=1

𝑛−𝑖
1

𝑘
< 2

𝑖=1

𝑛−1

𝑘=1

𝑛
1

𝑘

1

𝑘 + 1
<

1

𝑘

Useful fact:

𝑘=1

𝑛
1

𝑘
= Θ(log 𝑛)

Intuition (not proof!):

𝑘=1

𝑛
1

𝑘
≈ න

1

𝑛 1

𝑥
𝑑𝑥 = ln 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠 𝒏 Average

78

𝑖=1

𝑛−1

𝑗=𝑖+1

𝑛
2

𝑗 − 𝑖 + 1
=

𝑖=1

𝑛−1

𝑘=1

𝑛−𝑖
2

𝑘 + 1
< 2

𝑖=1

𝑛−1

𝑘=1

𝑛−𝑖
1

𝑘
< 2

𝑖=1

𝑛−1

𝑘=1

𝑛
1

𝑘

= 2

𝑖=1

𝑛−1

Θ(log 𝑛) = Θ 𝑛 log 𝑛

Useful fact:

𝑘=1

𝑛
1

𝑘
= Θ(log 𝑛)

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 11: Matrix Multiplication, Quickselect
	Slide 2: Announcements
	Slide 3: Divide and Conquer
	Slide 4: Constraints: Trees and Plants
	Slide 5: Closest Pair of Points
	Slide 6: Closest Pair of Points: Divide and Conquer
	Slide 7: Closest Pair of Points: Divide and Conquer
	Slide 8: Closest Pair of Points: Divide and Conquer
	Slide 9: Listing Points in the Boundary
	Slide 10: Closest Pair of Points: Divide and Conquer
	Slide 11: Closest Pair of Points: Divide and Conquer
	Slide 12: Matrix Multiplication
	Slide 13: Matrix Multiplication Divide and Conquer
	Slide 14: Matrix Multiplication Divide and Conquer
	Slide 15: Matrix Multiplication Divide and Conquer
	Slide 16: Matrix Multiplication Divide and Conquer
	Slide 17: Strassen’s Algorithm
	Slide 18: Strassen’s Algorithm
	Slide 19
	Slide 20: Is This the Fastest?
	Slide 21: Divide and Conquer Algorithms (Thus Far)
	Slide 22: Quicksort
	Slide 23: Quicksort
	Slide 24: Partition Procedure (Divide Step)
	Slide 25: Partition Procedure
	Slide 26: Partition Procedure
	Slide 27: Partition Procedure
	Slide 28: Partition Procedure
	Slide 29: Partition Procedure
	Slide 30: Partition Procedure
	Slide 31: Partition Procedure
	Slide 32: Partition Procedure Summary
	Slide 33: Conquer Step
	Slide 34: Quicksort Run Time (Optimistic)
	Slide 35: Quicksort Run Time (Worst-Case)
	Slide 36: Quicksort on a Nearly Sorted List
	Slide 37: How to Choose the Pivot?
	Slide 38: Good Pivot
	Slide 39: Quickselect Algorithm
	Slide 40: Quickselect Algorithm
	Slide 41: Partition Procedure (Divide Step)
	Slide 42: Conquer Step
	Slide 43: Quickselect Run Time (Optimistic)
	Slide 44: Quickselect Run Time (Worst-Case)
	Slide 45: How to Choose the Pivot?
	Slide 46: Good Pivot
	Slide 47: Good Pivot
	Slide 48: Median of Medians
	Slide 49: Median of Medians
	Slide 50: Median of Medians
	Slide 51: Median of Medians
	Slide 52: Median of Medians
	Slide 53: Quickselect
	Slide 54: Quickselect
	Slide 55: Median of Medians
	Slide 56: Quickselect
	Slide 57: Quickselect
	Slide 58: Phew! Back to Quicksort
	Slide 59: Phew! Back to Quicksort
	Slide 60: A Worthwhile Choice?
	Slide 61: Quicksort Running Time
	Slide 62: Quicksort Running Time
	Slide 63: Quicksort Running Time
	Slide 64: Quicksort Running Time
	Slide 65: Probability of Always Choosing d t h Order Statistic
	Slide 66: Formal Argument for n l o g n Average
	Slide 67: Formal Argument for n l o g n Average
	Slide 68: Formal Argument for n l o g n Average
	Slide 69: Formal Argument for n l o g n Average
	Slide 70: Formal Argument for n l o g n Average
	Slide 71: Formal Argument for n l o g n Average
	Slide 72: Formal Argument for n l o g n Average
	Slide 73: Formal Argument for n l o g n Average
	Slide 74: Formal Argument for n l o g n Average
	Slide 75: Formal Argument for n l o g n Average
	Slide 76: Formal Argument for n l o g n Average
	Slide 77: Formal Argument for n l o g n Average
	Slide 78: Formal Argument for n l o g n Average

