CS 3100 Data Structures and Algorithms 2 Lecture 11: Matrix Multiplication, Quickselect

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS 4th edition:

• Section 4.5

Announcements

- Upcoming dates
 - PS2 due September 29 (Friday) at 11:59pm
 - PA2 due October 8 (Sunday) at 11:59pm
 - Quizzes 1 and 2 Thursday October 5 in class
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

• Merge solutions to subproblems to obtain solution for original problem

When is this an effective strategy?

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

Closest Pair of Points

Given: A list of points

Return: Pair of points with smallest distance apart

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort boundary points by *y*-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Initialization: Sort points by *x*-coordinate

Divide. Partition points into two lists of points

Looks like another $O(n \log n)$ algorithm – combine step is still too expensive

Combine:

- Construct list of points in the boundary
- Sort boundary points by *y*-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort boundary points by *y*-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Solution: Maintain additional information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to *y*-coordinate

Sorting boundary points by *y*-coordinate now becomes a **merge**

Listing Points in the Boundary

LeftPoints:

Closest Pair: $(1, 5), d_{1,5}$ Sorted Points: [3,7,5,1]

RightPoints:

Closest Pair: (4,6), $d_{4,6}$ Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]

Boundary Points: [8,7,6,5,2]

Both of these lists can be computed by a *single* pass over the lists

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort boundary points by *y*-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the boundary (sorted by y-coordinate)
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

What is the running time?

 $\Theta(n \log n)$

T(n)

 $T(n) = 2T(n/2) + \Theta(n)$

Case 2 of Master's Theorem: $T(n) = \Theta(n \log n)$

 $\Theta(1)$ 2T(n/2)

 $\Theta(n \log n)$

 $\Theta(n)$

 $\Theta(n)$

 $\Theta(1$

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the boundary (sorted by y-coordinate)
- Compare each point in boundary to 15 • points above it and save the closest pair
- Output closest pair among left, right, and ٠ boundary points

Matrix Multiplication

$$n \begin{bmatrix} n \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \times \begin{bmatrix} 2 \\ 8 \\ 14 \end{bmatrix} \begin{pmatrix} 4 \\ 10 \\ 16 \end{bmatrix}$$

$$= \begin{bmatrix} 2+16+42 & 4+20+48 & 6+24+54 \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$P O(n^3) = \begin{bmatrix} 60 & 72 & 84 \\ 132 & 162 & 192 \\ 204 & 252 & 300 \end{bmatrix}$$

Run time? $O(n^3)$ Lower Bound? $\Omega(n^2)$

Multiply
$$n \times n$$
 matrices (A and B)

 Divide:

 $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16} \end{bmatrix}$
 $B = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ b_5 & b_6 & b_7 & b_8 \\ b_9 & b_{10} & b_{11} & b_{12} \\ b_{13} & b_{14} & b_{15} & b_{16} \end{bmatrix}$

Multiply $n \times n$ matrices (A and B)

Combine:

$$AB = \begin{bmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

Run time?
$$T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2 \quad \begin{array}{c} \text{Cost of} \\ \text{additions} \end{array}$$

$$T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2$$
$$T(n) = 8T\left(\frac{n}{2}\right) + n^2$$

$$a = 8, b = 2, f(n) = n^2$$

Case 1!
 $n^{\log_b a} = n^{\log_2 8} = n^3$
 $T(n) = \Theta(n^3)$
Can we do better?

Multiply $n \times n$ matrices (A and B)

Idea: Use a Karatsuba-like technique on this

Strassen's Algorithm

Calculate:

$$\begin{aligned} Q_1 &= \left(A_{1,1} + A_{2,2}\right) (B_{1,1} + B_{2,2}) \\ Q_2 &= \left(A_{2,1} + A_{2,2}\right) B_{1,1} \\ Q_3 &= A_{1,1} (B_{1,2} - B_{2,2}) \\ Q_4 &= A_{2,2} (B_{2,1} - B_{1,1}) \\ Q_5 &= \left(A_{1,1} + A_{1,2}\right) B_{2,2} \\ Q_6 &= \left(A_{2,1} - A_{1,1}\right) (B_{1,1} + B_{1,2}) \\ Q_7 &= \left(A_{1,2} - A_{2,2}\right) (B_{2,1} + B_{2,2}) \end{aligned}$$

$$B = \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix}$$

Find *AB*:

$$AB = \begin{bmatrix} Q_1 + Q_4 - Q_5 + Q_7 & Q_3 + Q_5 \\ Q_2 + Q_4 & Q_1 - Q_2 + Q_3 + Q_6 \end{bmatrix}$$

7 Multiplications

18 Additions

$$T(n) = 7T\left(\frac{n}{2}\right) + 18\frac{n^2}{4}$$

Strassen's Algorithm

$$T(n) = 7T\left(\frac{n}{2}\right) + \frac{9}{2}n^2$$

$$a = 7, b = 2, f(n) = \frac{9}{2}n^2$$

Case 1!

 $n^{\log_b a} = n^{\log_2 7} \approx n^{2.807}$

$$T(n) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.807})$$

Is This the Fastest?

Divide and Conquer Algorithms (Thus Far)

Mergesort

Naïve Multiplication

Karatsuba Multiplication

Closest Pair of Points

Strassen's Algorithm

What they have in common: **Divide:** Very easy (i.e. O(1)) **Combine:** More complex $(\Omega(n))$

Quicksort

Like Mergesort:

- Divide and conquer algorithm
- $O(n \log n)$ run time (on expectation)

Unlike Mergesort:

- **Divide** step is the hard part
- Typically faster than Mergesort (often is the basis of sorting algorithms in standard library implementations)

Quicksort

General idea: choose a pivot element, recursively sort two sublists around that element

Divide: select pivot element p, Partition(p)
Conquer: recursively sort left and right sublists
Combine: nothing!

Partition Procedure (Divide Step)

Input: an <u>unordered</u> list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

Initialize two pointers **Begin** and **End**

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Stop when Begin = End

Swap!

If Begin value < p, move Begin right Else swap Begin value with End value, move End Left

Stop when Begin = End

If Begin value < p, move Begin right Else swap Begin value with End value, move End Left Stop when Begin = End

Remaining item: where do we place the pivot?

If Begin value < p, move Begin right Else swap Begin value with End value, move End Left Stop when Begin = End

Case 1: meet at element < *p*

Swap *p* with pointer position

Case 2: meet at element > *p*

Swap *p* with value to the left

Partition Procedure Summary

- 1. Choose the pivot p to be the first element of the list
- 2. Initialize two pointers Begin (just after p), and End (at end of list)
- 3. While Begin < End:
 - If value of Begin < p, advance Begin to the right
 - Otherwise, swap value of Begin value with value of End value, and advance End to the left
- 4. If pointers meet at element with pointer position
- 5. Otherwise, if pointers meet at element > p: swap p with value to the left

Run time? $\Theta(n)$

Conquer Step

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

If the pivot is the median:

2	1	3	5	6	4	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Then we divide in half each time

 $T(n) = 2T(n/2) + n = \Theta(n \log n)$

Quicksort Run Time (Worst-Case)

If the pivot is the <u>extreme</u> (min/max):

Then we shorten by 1 each time

$$T(n) = T(n-1) + n$$

= $n + (n-1) + \dots + 2 + 1$
= $\frac{n(n+1)}{2} = \Theta(n^2)$

35

Quicksort on a Nearly Sorted List

First element always yields unbalanced pivot

Then we shorten by 1 each time

 $T(n) = \Theta(n^2)$
How to Choose the Pivot?

Good choice: $\Theta(n \log n)$

Bad choice: $\Theta(n^2)$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median
- Can we find median in linear time?
 - Yes! <u>Quickselect algorithm</u>

Quickselect Algorithm

Algorithm to compute the i^{th} order statistic

- i^{th} smallest element in the list
- 1st order statistic: minimum
- n^{th} order statistic: maximum
- $(n/2)^{\text{th}}$ order statistic: median

Quickselect Algorithm

Finds *i*th order statistic

General idea: choose a pivot element, partition around the pivot, and recurse on sublist containing index *i*

Divide: select pivot element *p*, Partition(*p*)

Conquer:

- if i = index of p, then we are done and return p
- if i < index of p recurse left. Otherwise, recurse right

Combine: Nothing!

Partition Procedure (Divide Step)

Input: an <u>unordered</u> list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

Conquer Step

Recurse on sublist that contains index *i* (add index of the pivot to *i* if recursing right)

Quickselect Run Time (Optimistic)

If the pivot is the median:

2	1	3	5	6	4	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Then we divide in half each time

$$T(n) = T(n/2) + n = \Theta(n)$$

Quickselect Run Time (Worst-Case)

If the pivot is the <u>extreme</u> (min/max):

Then we shorten by 1 each time

$$T(n) = T(n-1) + n = \Theta(n^2)$$

How to Choose the Pivot?

Good choice: $\Theta(n)$

Bad choice: $\Theta(n^2)$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median

But this is the problem that Quickselect is supposed to solve!

What's next: an algorithm for choosing a "decent" pivot (median of medians)

Good Pivot

Decent pivot: both sides of Pivot >30%

Fast way to select a "good" pivot

Guarantees pivot is greater than \approx 30% of elements and less than \approx 30% of the elements

Main idea: break list into blocks, find the median of each blocks, use the median of those medians

1. Break list into blocks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Quickselect

Divide: select an element *p* using Median of Medians, Partition(*p*)

Quickselect

Divide: select an element *p* using Median of Medians, Partition(*p*)

 $M(n) + \Theta(n)$

Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right (with index i - p) $\leq S\left(\frac{7n}{10}\right)$

Combine: Nothing!

$$S(n) \leq S\left(\frac{7n}{10}\right) + M(n) + \Theta(n)$$

$$M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$

Quickselect

Divide: select an element *p* using Median of Medians, Partition(*p*)

 $M(n) + \Theta(n)$

Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right

 $\leq S\left(\frac{7n}{10}\right)$

Combine: Nothing!

$$S(n) \leq S\left(\frac{7n}{10}\right) + M(n) + \Theta(n)$$

Quickselect

Divide: select an element *p* using Median of Medians, Partition(*p*)

 $M(n) + \Theta(n)$

Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right $\leq S\left(\frac{7n}{10}\right)$

Combine: Nothing!

$$S(n) \leq S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n) = \Theta(n)_{57}$$

Phew! Back to Quicksort

Divide: Select a pivot element, and <u>partition</u> about the pivot

Using <u>Quickselect</u>, always pivot about the median

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

Divide: Select a pivot element, and <u>partition</u> about the pivot

Using Quickselect, always pivot about the median

	2	1	3	5	6	4	7	8	9	10	11	12
--	---	---	---	---	---	---	---	---	---	----	----	----

 $T(n) = 2T(n/2) + \Theta(n)$

 $T(n) = \Theta(n \log n)$

A Worthwhile Choice?

Using Quickselect to pick median guarantees $\Theta(n \log n)$ worst-case run-time

Approach has very large constants

• If you really want $\Theta(n \log n)$, better off using MergeSort

More efficient approach: Random pivot

- Very small constant (very fast algorithm)
- Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

If the pivot is always $(n/10)^{\text{th}}$ order statistic:

If the pivot is always $(n/10)^{\text{th}}$ order statistic:

$$T(n) = T(n/10) + T(9n/10) + \Theta(n)$$
$$= \Theta(n \log n)$$

This is true if the pivot is any $(n/k)^{\text{th}}$ order statistic for any constant k > 1 (as long as the size of the smaller list is a <u>constant fraction</u> of the full list, we get $\Theta(n \log n)$ running time)

If the pivot is always d^{th} order statistic:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by d each time

$$T(n) = T(n - d) + n$$
$$= \Theta(n^2)$$

What's the probability of this occurring (for a <u>random</u> pivot)?

Probability of Always Choosing *d*th **Order Statistic**

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivots are among d smallest:

$$\frac{d}{n} \times \frac{d}{n-d} \times \frac{d}{n-2d} \times \dots \times \frac{d}{2d} \times 1 = \left(\frac{n}{d} \times \left(\frac{n}{d} - 1\right) \times \dots \times 1\right)^{-1} = \frac{1}{\left(\frac{n}{d}\right)}$$

Very small probability!

We will focus on counting the number of <u>comparisons</u> **For simplicity:** suppose all elements are <u>distinct</u>

Quicksort only compares against a pivot

Element *i* only compared to element *j* if one of them was the pivot

What is the probability of comparing two given elements?

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Consider the sorted version of the list

Observation: Adjacent elements must be compared

- Why? Otherwise I would not know their order
- Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements <u>always</u> end up in same sublist, unless one is the pivot

What is the probability of comparing two given elements?

Consider the sorted version of the list

$$Pr[we compare 1 and 12] = \frac{2}{12}$$

Assuming pivot is chosen uniformly at random

Elements only compared if 1 or 12 was chosen as the first pivot since otherwise they are in <u>different</u> sublists

What is the probability of comparing two given elements?

Case 1: Pivot less than *i*

Then sublist [i, i + 1, ..., j] will be in right sublist and will be processed in future invocation of Quicksort

Pr[we compare *i* and *j*] = Pr[we compare *i* and *j* in Quicksort([p + 1, ..., n])

What is the probability of comparing two given elements?

Case 1: Pivot less than *i* Then sublist [i, i + 1, ..., j] will be processed in future invocation of

[p + 1, ..., n] denotes the right sublist (in some order) that we are recursively sorting

Pr[we compare i and j] = Pr[we compare i and j in Quicksort([p + 1, ..., n])]

What is the probability of comparing two given elements?

Case 2: Pivot greater than jThen sublist [i, i + 1, ..., j] will be in left sublist and will be processed in future invocation of Quicksort

Pr[we compare *i* and *j*] = Pr[we compare *i* and *j* in Quicksort([1, ..., *p*])

What is the probability of comparing two given elements?

Case 3.1: Pivot contained in [i + 1, ..., j - 1]Then *i* and *j* are in different sublists and will <u>never</u> be compared

 $\Pr[\text{we compare } i \text{ and } j] = 0$
What is the probability of comparing two given elements?

Case 3.2: Pivot is either *i* or *j* Then we will <u>always</u> compare *i* and *j*

Pr[we compare i and j] = 1

What is the probability of comparing two given elements?

Case 1: Pivot less than *i*

Pr[we compare i and j] = Pr[we compare i and j in Quicksort([p + 1, ..., n])]

Case 2: Pivot greater than *j*

Pr[we compare *i* and *j*] = Pr[we compare *i* and *j* in Quicksort([1, ..., *p*])

Case 3: Pivot in [*i*, *i* + 1, ..., *j*]

Pr[we compare *i* and *j*] = Pr[*i* or *j* is selected as pivot] = $\frac{2}{i-i+1}$

Probability of comparing element *i* with element *j*:

Pr[we compare *i* and *j*] =
$$\frac{2}{j - i + 1}$$

Probability of comparing element *i* with element *j*:

$$\Pr[\text{we compare } i \text{ and } j] = \frac{2}{j - i + 1}$$

Expected number of comparisons:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} < 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}$$
Substitution:

$$\frac{1}{k+1} < \frac{1}{k}$$

$$76$$

Useful fact:
$$\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

Intuition (not proof!):

$$\sum_{k=1}^{n} \frac{1}{k} \approx \int_{1}^{n} \frac{1}{x} dx = \ln n$$

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < 2\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} < 2\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}$$

$$= 2\sum_{i=1}^{n-1} \Theta(\log n) = \Theta(n\log n)$$

Useful fact:
$$\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$