CS 3100

Data Structures and Algorithms 2 Lecture 11: Matrix Multiplication, Quickselect

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Section 4.5

Announcements

- Upcoming dates
- PS2 due September 29 (Friday) at 11:59pm
- PA2 due October 8 (Sunday) at 11:59pm
- Quizzes 1 and 2 Thursday October 5 in class
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide:

- Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

Closest Pair of Points

Given: A list of points
Return: Pair of points with smallest distance apart
(1)

(2)

(5)
(4)
(6)

$$
7
$$

(3)

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort boundary points by y-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Dividn. Dartitinn nonintc into twolictc of noints
Looks like another $O(n \log n)$ algorithm - combine step is still too expensive

Combine:

- Construct list of points in thoundary
- Sort boundary points by y-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort boundary points by y-coordinate
- Compare each point in boundary to 15 points above it and save the closest pair
- Output closest pair among left, right, and boundary points

Solution: Maintain additional information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to y coordinate

Sorting boundary points by y coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:

Closest Pair: $(1,5), d_{1,5}$
Sorted Points: [3,7,5,1]
RightPoints:
Closest Pair: $(4,6), d_{4,6}$
Sorted Points: [8,6,4,2]
Merged Points: [8,3,7,6,4,5,1,2]
Boundary Points: [8,7,6,5,2]
Both of these lists can be computed by a single pass over the lists

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Possible Solution \#1 to this? Maintain additional information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to y-coordinate

Instead of sorting runway points by y-coordinate, use this index by y coordinate?

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Possible Solution \#2 to this?

- Merge sorted list of points by y coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

What is the running time?

$\Theta(n \log n)$

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

Case 2 of Master's Theorem $T(n)=\Theta(n \log n)$
$\Theta(n \log n)$ Initialization: Sort points by x-coordinate
$\Theta(1)$
$2 T(n / 2)$
Conquer: Recursively compute the closest pair of points in each list

Combine:

- Somehow access runway points in increasing y-coordinate order
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Multipling Two Matrices

Matrix Multiplication

$$
\begin{aligned}
& n\left[\begin{array}{ccc}
\begin{array}{ll}
1 & 2 \\
4 & 3 \\
4 & 5 \\
6 \\
7 & 8
\end{array} & 9
\end{array}\right] \times\left[\begin{array}{ccc}
2 \\
8 \\
14
\end{array}\right]\left[\begin{array}{cc}
4 \\
10 \\
16
\end{array}\right]\left[\begin{array}{c}
6 \\
12 \\
18
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2+16+42 & 4+20+48 & 6+24+54 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \\
& =\left[\begin{array}{ccc}
60 & 72 & 84 \\
132 & 162 & 192 \\
204 & 252 & 300
\end{array}\right]
\end{aligned}
$$

Run time? $O\left(n^{3}\right)$

Matrix Multiplication Divide and Conquer

Multiply $n \times n$ matrices (A and B)
Divide:

$$
A=\left[\begin{array}{cc|cc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
\hline a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right] \quad B=\left[\begin{array}{cc|cc}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8} \\
\hline b_{9} & b_{10} & b_{11} & b_{12} \\
b_{13} & b_{14} & b_{15} & b_{16}
\end{array}\right]
$$

Matrix Multiplication Divide and Conquer

Multiply $n \times n$ matrices (A and B)

Combine:

$$
A B=\left[\begin{array}{ll}
A_{1,1} B_{1,1}+A_{1,2} B_{2,1} & A_{1,1} B_{1,2}+A_{1,2} B_{2,2} \\
A_{2,1} B_{1,1}+A_{2,2} B_{2,1} & A_{2,1} B_{1,2}+A_{2,2} B_{2,2}
\end{array}\right]
$$

Run time? $\quad T(n)=8 T\left(\frac{n}{2}\right)+4\left(\frac{n}{2}\right)^{2} \quad \begin{aligned} & \text { Cost of } \\ & \text { additions }\end{aligned}$

Matrix Multiplication Divide and Conquer

$$
\begin{gathered}
T(n)=8 T\left(\frac{n}{2}\right)+4\left(\frac{n}{2}\right)^{2} \\
T(n)=8 T\left(\frac{n}{2}\right)+n^{2} \\
a=8, b=2, f(n)=n^{2} \\
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \quad \text { Case 1! } \\
T(n)=\Theta\left(n^{3}\right) \quad \text { Can we do better? }
\end{gathered}
$$

Matrix Multiplication Divide and Conquer

Multiply $n \times n$ matrices (A and B)

$$
\begin{gathered}
A=\begin{array}{ccc}
A_{1,1} & A_{1,2} \\
\hline A_{2,1} & A_{2,2}
\end{array} \quad B=\begin{array}{cc}
B_{1,1} & B_{1,2} \\
\hline B_{2,1} & B_{2,2} \\
\hline
\end{array} \\
A B=\left[\begin{array}{ll}
A_{1,1} B_{1,1}+A_{1,2} B_{2,1} & A_{1,1} B_{1,2}+A_{1,2} B_{2,2} \\
A_{2,1} B_{1,1}+A_{2,2} B_{2,1} & A_{2,1} B_{1,2}+A_{2,2} B_{2,2}
\end{array}\right]
\end{gathered}
$$

Idea: Use a Karatsuba-like technique on this

Strassen's Algorithm

Multiply $n \times n$ matrices (A and B)

$$
A=\begin{array}{|c}
A_{1,1} \\
\hline A_{2,1} \\
A_{1,2} \\
\hline A_{2,2}
\end{array}
$$

$$
B=\begin{array}{|c|c}
B_{1,1} & B_{1,2} \\
\hline B_{2,1} & B_{2,2} \\
\hline
\end{array}
$$

Find $A B$:

$$
\begin{aligned}
& Q_{1}=\left(A_{1,1}+A_{2,2}\right)\left(B_{1,1}+B_{2,2}\right) \\
& Q_{2}=\left(A_{2,1}+A_{2,2}\right) B_{1,1} \\
& Q_{3}=A_{1,1}\left(B_{1,2}-B_{2,2}\right) \\
& Q_{4}=A_{2,2}\left(B_{2,1}-B_{1,1}\right) \\
& Q_{5}=\left(A_{1,1}+A_{1,2}\right) B_{2,2} \\
& Q_{6}=\left(A_{2,1}-A_{1,1}\right)\left(B_{1,1}+B_{1,2}\right) \\
& Q_{7}=\left(A_{1,2}-A_{2,2}\right)\left(B_{2,1}+B_{2,2}\right)
\end{aligned}
$$

$$
A B=\left[\begin{array}{cc}
Q_{1}+Q_{4}-Q_{5}+Q_{7} & Q_{3}+Q_{5} \\
Q_{2}+Q_{4} & Q_{1}-Q_{2}+Q_{3}+Q_{6}
\end{array}\right]
$$

7 Multiplications

$$
T(n)=7 T\left(\frac{n}{2}\right)+18 \frac{n^{2}}{4}
$$

Strassen's Algorithm

$$
\begin{gathered}
T(n)=7 T\left(\frac{n}{2}\right)+\frac{9}{2} n^{2} \\
a=7, b=2, f(n)=\frac{9}{2} n^{2} \\
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.807} \\
T(n)=\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.807}\right)
\end{gathered}
$$

Is This the Fastest?

Best possible is still unknown

Best lower bound: $\Omega\left(n^{2}\right)$

Divide and Conquer Algorithms (Thus Far)

Mergesort
Naïve Multiplication
Karatsuba Multiplication
Closest Pair of Points
Strassen's Algorithm

What they have in common:
Divide: Very easy (i.e. $O(1)$)
Combine: More complex ($\Omega(n)$)

Quicksort

Like Mergesort:

- Divide and conquer algorithm
- $O(n \log n)$ run time (on expectation)

Unlike Mergesort:

- Divide step is the hard part
- Typically faster than Mergesort (often is the basis of sorting algorithms in standard library implementations)

Quicksort

General idea: choose a pivot element, recursively sort two sublists around that element

Divide: select pivot element $p, \operatorname{Partition}(p)$
Conquer: recursively sort left and right sublists
Combine: nothing!

Partition Procedure (Divide Step)

Input: an unordered list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Partition Procedure

Initialize two pointers Begin and End

Partition Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Partition Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Stop when Begin = End

Partition Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Stop when Begin = End

Swap!

Swap!

Partition Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Stop when Begin = End

Remaining item: where do we place the pivot?

Partition Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Case 1: meet at element $<p$
Swap p with pointer position

2	5	7	3	6	4	1	8	9	10	11	12

Partition Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Stop when Begin = End

Case 2: meet at element $>p$ Swap p with value to the left

Partition Procedure Summary

1. Choose the pivot p to be the first element of the list
2. Initialize two pointers Begin (just after p), and End (at end of list)
3. While Begin < End:

- If value of Begin $<p$, advance Begin to the right
- Otherwise, swap value of Begin value with value of End value, and advance End to the left

4. If pointers meet at element $<p$: $\operatorname{swap} p$ with pointer position
5. Otherwise, if pointers meet at element $>p: \operatorname{swap} p$ with value to the left

Run time? $\quad \Theta(n)$

Conquer Step

2	5	7	3	6	4	1	8	9	10	11	12
							\uparrow				
All elements $<p$									elem	men	ts $>p$
Exactly where it belongs!											

Quicksort Run Time (Optimistic)

If the pivot is the median:

2	5	1	3	6	4	7	8	10	9	11	12

2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
T(n)=2 T(n / 2)+n=\Theta(n \log n)
$$

Quicksort Run Time (Worst-Case)

If the pivot is the extreme $(\mathrm{min} / \mathrm{max})$:

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =n+(n-1)+\cdots+2+1 \\
& =\frac{n(n+1)}{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

Quicksort on a Nearly Sorted List

First element always yields unbalanced pivot

1	2	3	4	5	6	7	8	9	10	11	12

1	2	3	4	5	6	7	8	9	10	11	12

Then we shorten by 1 each time

$$
T(n)=\Theta\left(n^{2}\right)
$$

How to Choose the Pivot?

Good choice: $\Theta(n \log n)$

Bad choice: $\Theta\left(n^{2}\right)$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median

Can we find median in linear time?

- Yes! Quickselect algorithm

Quickselect Algorithm

Algorithm to compute the $i^{\text {th }}$ order statistic

- $i^{\text {th }}$ smallest element in the list
- $1^{\text {st }}$ order statistic: minimum
- $n^{\text {th }}$ order statistic: maximum
- $(n / 2)^{\text {th }}$ order statistic: median

Quickselect Algorithm

Finds $i^{\text {th }}$ order statistic

General idea: choose a pivot element, partition around the pivot, and recurse on sublist containing index i

Divide: select pivot element $p, \operatorname{Partition}(p)$
Conquer:

- if $i=$ index of p, then we are done and return p
- if $i<$ index of p recurse left. Otherwise, recurse right

Combine: Nothing!

CLRS Pseudocode for Quickselect

Randomized-Select (A, p, r, i)
1 if $p==r$
2 return $A[p]$
$3 \quad q=$ RANDOMIZED-PARTITION (A, p, r)
$4 k=q-p+1 \quad / /$ number of elements in left sub-list +1
5 if $i==k \quad / /$ the pivot value is the answer
6 return $A[q]$
7 elseif $i<k$
8 return Randomized-SELECT $(A, p, q-1, i)$
9 else return RANDOMIZED-SELECT $(A, q+1, r, i-k)$
// note adjustment to i when recursing on right side

Note: In CLRS, they're using a partition that randomly chooses the pivot element.
That's why you see "Randomized" in the names here. Ignore that for the moment.

Partition Procedure (Divide Step)

Input: an unordered list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Conquer Step

Recurse on sublist that contains index i (add index of the pivot to i if recursing right)

Quickselect Run Time (Optimistic)

If the pivot is the median:

2	5	1	3	6	4	7	8	10	9	11	12
2 1 3 5 6 4 7 8 9 10 11 12											

Then we divide in half each time

$$
T(n)=T(n / 2)+n=\Theta(n)
$$

Quickselect Run Time (Worst-Case)

If the pivot is the extreme ($\mathrm{min} / \mathrm{max}$):

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
T(n)=T(n-1)+n=\Theta\left(n^{2}\right)
$$

How to Choose the Pivot?

Good choice: $\Theta(n)$

Bad choice: $\Theta\left(n^{2}\right)$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median

But this is the problem that Quickselect is supposed to solve!

What's next: an algorithm for choosing a "decent" pivot (median of medians)

Good Pivot

Decent pivot: both sides of Pivot >30\%

Median of Medians

Fast way to select a "good" pivot
Guarantees pivot is greater than $\approx 30 \%$ of elements and less than $\approx 30 \%$ of the elements

Main idea: break list into blocks, find the median of each blocks, use the median of those medians

Median of Medians

1. Break list into blocks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Median of Medians

Each chunk sorted, chunks ordered by their medians

Median of Medians

Median of Medians

Quickselect

Divide: select an element p using Median of Medians, $\operatorname{Partition(p)}$ $M(n)+\Theta(n)$
median of medians algorithm
partition algorithm

Quickselect

Divide: select an element p using Median of Medians, $\operatorname{Partition(p)}$

$$
M(n)+\Theta(n)
$$

Conquer: if $i=$ index of p, done, if $i<$ index of p recurse left. Else recurse right (with index $i-p$)

Combine: Nothing!

$$
\leq S\left(\frac{7 n}{10}\right)
$$

$$
S(n) \leq S\left(\frac{7 n}{10}\right)+M(n)+\Theta(n)
$$

Median of Medians

1. Break list into blocks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)
\square

$$
M(n)=S\left(\frac{n}{5}\right)+\Theta(n)
$$

Quickselect

Divide: select an element p using Median of Medians, $\operatorname{Partition(p)}$

$$
M(n)+\Theta(n)
$$

Conquer: if $i=$ index of p, done, if $i<$ index of p recurse left. Else recurse right

Combine: Nothing!

$$
\leq S\left(\frac{7 n}{10}\right)
$$

$$
S(n) \leq S\left(\frac{7 n}{10}\right)+M(n)+\Theta(n)
$$

Quickselect

Divide: select an element p using Median of Medians, $\operatorname{Partition(p)}$

$$
M(n)+\Theta(n)
$$

Conquer: if $i=$ index of p, done, if $i<$ index of p recurse left. Else recurse right

Combine: Nothing!

$$
\leq S\left(\frac{7 n}{10}\right)
$$

$$
S(n) \leq S\left(\frac{7 n}{10}\right)+S\left(\frac{n}{5}\right)+\Theta(n)=\Theta(n)
$$

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

2	5	1	3	6	4	7	8	10	9	11	12

Using Quickselect, always pivot about the median

2	1	3	5	6	4	7	8	9	10	11	12

Conquer: Recursively sort left and right sublists
If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

2	5	1	3	6	4	7	8	10	9	11	12

Using Quickselect, always pivot about the median

2	1	3	5	6	4	7	8	9	10	11	12

$$
\begin{gathered}
T(n)=2 T(n / 2)+\Theta(n) \\
T(n)=\Theta(n \log n)
\end{gathered}
$$

A Worthwhile Choice?

Using Quickselect to pick median guarantees $\Theta(n \log n)$ worst-case run-time Approach has very large constants

- If you really want $\Theta(n \log n)$, better off using MergeSort

More efficient approach: Random pivot

- Very small constant (very fast algorithm)
- Expected to run in $\Theta(n \log n)$ time
- Why? Unbalanced partitions are very unlikely

Quicksort Running Time

If the pivot is always $(n / 10)^{\text {th }}$ order statistic:

$$
T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)
$$

Quicksort Running Time

$$
T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)
$$

Quicksort Running Time

If the pivot is always $(n / 10)^{\text {th }}$ order statistic:

$$
\begin{aligned}
T(n) & =T(n / 10)+T(9 n / 10)+\Theta(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

This is true if the pivot is any $(n / k)^{\text {th }}$ order statistic for any constant $k>1$ (as long as the size of the smaller list is a constant fraction of the full list, we get $\Theta(n \log n)$ running time)

Quicksort Running Time

If the pivot is always $d^{\text {th }}$ order statistic:

1	5	2	3	6	4	7	8	10	9	11	12

Then we shorten by d each time

$$
\begin{aligned}
T(n) & =T(n-d)+n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

What's the probability of this occurring (for a random pivot)?

Probability of Always Choosing $d^{\text {th }}$ Order Statistic

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$
Probability second pivot is among d smallest: $\frac{d}{n-d}$
Probability all pivots are among d smallest:
Very small probability!

$$
\frac{d}{n} \times \frac{d}{n-d} \times \frac{d}{n-2 d} \times \cdots \times \frac{d}{2 d} \times 1=\left(\frac{n}{d} \times\left(\frac{n}{d}-1\right) \times \cdots \times 1\right)^{-1}=\frac{1}{\left(\frac{n}{d}\right)!}
$$

Formal Argument for $n \log n$ Average

We will focus on counting the number of comparisons
For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot

- Element i only compared to element j if one of them was the pivot

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

1	2	3	4	5	6	7	8	9	10	11	12

Consider the sorted version of the list
Observation: Adjacent elements must be compared

- Why? Otherwise I would not know their order
- Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in same sublist, unless one is the pivot

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

1	2	3	4	5	6	7	8	9	10	11	12

Consider the sorted version of the list

$$
\operatorname{Pr}[\text { we compare } 1 \text { and } 12]=\frac{2}{12}
$$

Assuming pivot is chosen uniformly at random

Elements only compared if 1 or 12 was chosen as the first pivot since otherwise they are in different sublists

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

Case 1: Pivot less than i
Then sublist $[i, i+1, \ldots, j]$ will be in right sublist and will be processed in future invocation of Quicksort
$\operatorname{Pr}[$ we compare i and $j]=\operatorname{Pr}[$ we compare i and j in Quicksort $([p+1, \ldots, n])$

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

1	2	3	4		5	6	7		8	9	10	11	12	2
					i					j				

Case 1: Pivot less than i Then sublist $[i, i+1, \ldots, j]$ will be processed in future invocation of
$[p+1, \ldots, n]$ denotes the right sublist (in some order) that we are recursively sorting
$\operatorname{Pr}[$ we compare i and $j]=\operatorname{Pr}[$ we compare i and j in Quicksort $([p+1, \ldots, n])$

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

Case 2: Pivot greater than j
Then sublist $[i, i+1, \ldots, j]$ will be in left sublist and will be processed in future invocation of Quicksort
$\operatorname{Pr}[$ we compare i and $j]=\operatorname{Pr}[$ we compare i and j in Quicksort $([1, \ldots, p])$

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

Case 3.1: Pivot contained in $[i+1, \ldots, j-1]$
Then i and j are in different sublists and will never be compared

$$
\operatorname{Pr}[\text { we compare } i \text { and } j]=0
$$

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

1	2	3	4	5	6	7	8	9	10	11		12
				i								

Case 3.2: Pivot is either i or j
Then we will always compare i and j

$$
\operatorname{Pr}[\text { we compare } i \text { and } j]=1
$$

Formal Argument for $n \log n$ Average

What is the probability of comparing two given elements?

Case 1: Pivot less than i
$\operatorname{Pr}[$ we compare i and $j]=\operatorname{Pr}[$ we compare i and j in Quicksort $([p+1, \ldots, n])$
Case 2: Pivot greater than j
$\operatorname{Pr}[$ we compare i and $j]=\operatorname{Pr}[$ we compare i and j in Quicksort $([1, \ldots, p])$
Case 3: Pivot in $[i, i+1, \ldots, j]$

$$
\operatorname{Pr}[\text { we compare } i \text { and } j]=\operatorname{Pr}[i \text { or } j \text { is selected as pivot }]=\frac{2}{j-i+1}
$$

Formal Argument for $n \log n$ Average

Probability of comparing element i with element j :

$$
\operatorname{Pr}[\text { we compare } i \text { and } j]=\frac{2}{j-i+1}
$$

Formal Argument for $n \log n$ Average

Probability of comparing element i with element j :

$$
\operatorname{Pr}[\text { we compare } i \text { and } j]=\frac{2}{j-i+1}
$$

Expected number of comparisons:

$$
\begin{gathered}
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}=\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}<2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k}<2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k} \\
\begin{array}{c}
\text { Substitution: } \\
k=j-i
\end{array} \\
\frac{1}{k+1}<\frac{1}{k}
\end{gathered}
$$

Formal Argument for $n \log n$ Average

$$
\begin{gathered}
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}=\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}<2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k}<2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k} \\
\begin{array}{c}
\text { Substitution: } \\
k=j-i
\end{array}
\end{gathered}
$$

Useful fact: $\sum_{k=1}^{n} \frac{1}{k}=\Theta(\log n)$
Intuition (not proof!):

$$
\sum_{k=1}^{n} \frac{1}{k} \approx \int_{1}^{n} \frac{1}{x} d x=\ln n
$$

Formal Argument for $n \log n$ Average

$$
\begin{aligned}
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} & =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}<2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k}<2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k} \\
& =2 \sum_{i=1}^{n-1} \Theta(\log n)=\Theta(n \log n)
\end{aligned}
$$

Useful fact: $\sum_{k=1}^{n} \frac{1}{k}=\Theta(\log n)$

