
CS 3100
Data Structures and Algorithms 2
Lecture 11: Matrix Multiplication, Quickselect

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Section 4.5

Announcements

• Upcoming dates
• PS2 due September 29 (Friday) at 11:59pm
• PA2 due October 8 (Sunday) at 11:59pm
• Quizzes 1 and 2 Thursday October 5 in class

• Course email (comes to both professors and head TAs):

 cs3100@cshelpdesk.atlassian.net

2

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively
• If the subproblems are “small”:

• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

When is this an
effective strategy?

[CLRS Chapter 4]

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

1
2

3

4
5

6

7

8

ROBO

M
ulcher

3000

Closest Pair of Points

5

1
2

3

4
5

6

7

8

Given: A list of points

Return: Pair of points with
smallest distance apart

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Looks like another 𝑂 𝑛 log 𝑛
algorithm – combine step is still

too expensive

Closest Pair of Points: Divide and Conquer

Solution: Maintain additional
information in the recursion
• Minimum distance among pairs of

points in the list
• List of points sorted according to 𝑦-

coordinate

Sorting boundary points by 𝑦-
coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

boundary points

Listing Points in the Boundary

1
2

3

4
5

6

7

8

9

LeftPoints:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝑑!,#
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), 𝑑$,%
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Boundary Points: 8,7,6,5,2

Both of these lists can be computed
by a single pass over the lists

Closest Pair of Points: Divide and Conquer

Possible Solution #1 to this? Maintain
additional information in the recursion
• Minimum distance among pairs of

points in the list
• List of points sorted according to
𝑦-coordinate

Instead of sorting runway points by
𝑦-coordinate, use this index by y
coordinate?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list
 Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list
 Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

Possible Solution #2 to this?
• Merge sorted list of points by 𝑦-

coordinate and construct list of points
in the runway (sorted by 𝑦-coordinate)

• Compare each point in runway to 7 or
15 points above it and save the closest
pair

• Output closest pair among left, right,
and runway points

Closest Pair of Points: Divide and Conquer

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Somehow access runway points in increasing

y-coordinate order
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

Multipling Two Matrices

Matrix Multiplication

16

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛!)

𝑛

𝑛

Lower Bound? Ω(𝑛")

Matrix Multiplication Divide and Conquer

17

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎& 𝑎' 𝑎$
𝑎# 𝑎% 𝑎(𝑎)
𝑎* 𝑎!+ 𝑎!! 	𝑎!&
𝑎!' 𝑎!$ 𝑎!# 𝑎!%

𝐵 =

𝑏! 𝑏& 𝑏' 𝑏$
𝑏# 𝑏% 𝑏(𝑏)
𝑏* 𝑏!+ 𝑏!! 	𝑏!&
𝑏!' 𝑏!$ 𝑏!# 𝑏!%

Divide:

Matrix Multiplication Divide and Conquer

18

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎& 𝑎' 𝑎$
𝑎# 𝑎% 𝑎(𝑎)
𝑎* 𝑎!+ 𝑎!! 	𝑎!&
𝑎!' 𝑎!$ 𝑎!# 𝑎!%

𝐴#,# 𝐴#,"

𝐴",# 𝐴","

𝐴𝐵 =
𝐴!,!𝐵!,! + 𝐴!,&𝐵&,!	 𝐴!,!𝐵!,& + 𝐴!,&𝐵&,&
𝐴&,!𝐵!,! + 𝐴&,&𝐵&,! 𝐴&,!𝐵!,& + 𝐴&,&𝐵&,&

𝐵 =

𝑏! 𝑏& 𝑏' 𝑏$
𝑏# 𝑏% 𝑏(𝑏)
𝑏* 𝑏!+ 𝑏!! 	𝑏!&
𝑏!' 𝑏!$ 𝑏!# 𝑏!%

𝐵#,# 𝐵#,"

𝐵",# 𝐵","

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

" Cost of
additions

Combine:

Matrix Multiplication Divide and Conquer

19

𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

"

𝑇 𝑛 = 8𝑇
𝑛
2
+ 𝑛"

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛"

𝑛%&'! (= 𝑛%&'") = 𝑛!
Case 1!

𝑇 𝑛 = Θ(𝑛!)
Can we do better?

Matrix Multiplication Divide and Conquer

20

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎& 𝑎' 𝑎$
𝑎# 𝑎% 𝑎(𝑎)
𝑎* 𝑎!+ 𝑎!! 	𝑎!&
𝑎!' 𝑎!$ 𝑎!# 𝑎!%

𝐴#,# 𝐴#,"

𝐴",# 𝐴","

𝐴𝐵 =
𝐴!,!𝐵!,! + 𝐴!,&𝐵&,!	 𝐴!,!𝐵!,& + 𝐴!,&𝐵&,&
𝐴&,!𝐵!,! + 𝐴&,&𝐵&,! 𝐴&,!𝐵!,& + 𝐴&,&𝐵&,&

𝐵 =

𝑏! 𝑏& 𝑏' 𝑏$
𝑏# 𝑏% 𝑏(𝑏)
𝑏* 𝑏!+ 𝑏!! 	𝑏!&
𝑏!' 𝑏!$ 𝑏!# 𝑏!%

𝐵#,# 𝐵#,"

𝐵",# 𝐵","

Idea: Use a Karatsuba-like technique on this

Strassen’s Algorithm

21

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎& 𝑎' 𝑎$
𝑎# 𝑎% 𝑎(𝑎)
𝑎* 𝑎!+ 𝑎!! 	𝑎!&
𝑎!' 𝑎!$ 𝑎!# 𝑎!%

𝐴#,# 𝐴#,"

𝐴",# 𝐴","
𝐵 =

𝑏! 𝑏& 𝑏' 𝑏$
𝑏# 𝑏% 𝑏(𝑏)
𝑏* 𝑏!+ 𝑏!! 	𝑏!&
𝑏!' 𝑏!$ 𝑏!# 𝑏!%

𝐵#,# 𝐵#,"

𝐵",# 𝐵","
Calculate:
𝑄! = 𝐴!,! + 𝐴#,# (𝐵!,! + 𝐵#,#)
𝑄# = 𝐴#,! + 𝐴#,# 𝐵!,!
𝑄$ = 𝐴!,!(𝐵!,# 	− 𝐵#,#)
𝑄% = 𝐴#,#(𝐵#,! − 𝐵!,!)

𝑄& = 𝐴#,! − 𝐴!,! (𝐵!,! + 𝐵!,#)
𝑄' = 𝐴!,! + 𝐴!,# 𝐵#,#

𝑄(= 𝐴!,# − 𝐴#,# (𝐵#,! + 𝐵#,#)

𝐴𝐵 = 𝑄! + 𝑄$ − 𝑄# + 𝑄(𝑄' + 𝑄#
𝑄& + 𝑄$ 𝑄! − 𝑄& + 𝑄' + 𝑄%

Find 𝐴𝐵:

7 Multiplications 18 Additions

𝑇 𝑛 = 7𝑇
𝑛
2
+ 18

𝑛&

4

Strassen’s Algorithm

22

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛"

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛"

𝑛%&'! (= 𝑛%&'" * ≈ 𝑛".),*
Case 1!

𝑇 𝑛 = Θ 𝑛%&'" * ≈ Θ(𝑛".),*)

23

𝑛'

𝑛,-.! (

Is This the Fastest?

24

Best possible is still unknown

Best lower bound: Ω 𝑛-

Divide and Conquer Algorithms (Thus Far)

Mergesort
Naïve Multiplication
Karatsuba Multiplication
Closest Pair of Points
Strassen’s Algorithm

25

What they have in common:
 Divide: Very easy (i.e. 𝑂(1))
 Combine: More complex (Ω(𝑛))

Quicksort

Like Mergesort:
• Divide and conquer algorithm
• 𝑂(𝑛 log 𝑛) run time (on expectation)

Unlike Mergesort:
• Divide step is the hard part
• Typically faster than Mergesort (often is the basis of sorting algorithms in

standard library implementations)

26

Quicksort

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element 𝑝, Partition(𝑝)
Conquer: recursively sort left and right sublists
Combine: nothing!

27

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

28

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Partition Procedure

8 5 7 3 12 10 1 2 4 9 6 11

Initialize two pointers Begin and End

Partition Procedure

30

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 	𝑝, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11 Swap!

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 	𝑝, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Partition Procedure

31

Swap!

8 5 7 3 11 10 1 2 4 9 6 12 Swap!

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12 Swap!

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 	𝑝, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Partition Procedure

32

Swap!

8 5 7 3 6 9 1 2 4 10 11 12 Swap!

8 5 7 3 6 4 1 2 9 10 11 12

8 5 7 3 6 4 1 2 9 10 11 12

8 5 7 3 6 4 1 2 9 10 11 12

If Begin value < 	𝑝, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Partition Procedure

8 5 7 3 6 4 1 2 9 10 11 12

Remaining item: where do we place the pivot?

8 5 7 3 6 4 1 2 9 10 11 12

If Begin value < 	𝑝, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Partition Procedure

8 5 7 3 6 4 1 2 9 10 11 12

Case 1: meet at element < 𝑝
 Swap 𝑝 with pointer position

2 5 7 3 6 4 1 8 9 10 11 12

8 5 7 3 6 4 1 2 9 10 11 12

If Begin value < 	𝑝, move Begin right
Else swap Begin value with End value, move End Left
Stop when Begin = End

Partition Procedure

8 5 7 3 6 4 1 2 9 10 11 12

Case 2: meet at element > 𝑝
 Swap 𝑝 with value to the left

Partition Procedure Summary

1. Choose the pivot 𝑝 to be the first element of the list
2. Initialize two pointers Begin (just after 𝑝), and End (at end of list)
3. While Begin < End:
• If value of Begin < 	𝑝, advance Begin to the right
• Otherwise, swap value of Begin value with value of End value, and advance

End to the left

4. If pointers meet at element < 𝑝: swap 𝑝 with pointer position
5. Otherwise, if pointers meet at element > 𝑝: swap 𝑝 with value to

the left

36

Run time? Θ(𝑛)

Conquer Step

37

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

Then we divide in half each time

38

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

If the pivot is the median:

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time (Worst-Case)

Then we shorten by 1 each time

39

If the pivot is the extreme (min/max):

𝑇 𝑛 = 𝑇(𝑛 − 1) + 𝑛

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

= 𝑛 + 𝑛 − 1 +⋯+ 2 + 1

=
𝑛 𝑛 + 1

2
= Θ 𝑛-

Quicksort on a Nearly Sorted List

Then we shorten by 1 each time

40

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

First element always yields unbalanced pivot

𝑇 𝑛 = Θ 𝑛-

How to Choose the Pivot?

41

Good choice: Θ 𝑛 log 𝑛

Bad choice: Θ 𝑛!

Good Pivot

What makes a good pivot?
• Roughly even split between left and right
• Ideally: median

Can we find median in linear time?
• Yes! Quickselect algorithm

42

Quickselect Algorithm

Algorithm to compute the 𝑖th order statistic
• 𝑖th smallest element in the list
• 1st order statistic: minimum
• 𝑛th order statistic: maximum
• ⁄(𝑛 2)th order statistic: median

43

Quickselect Algorithm

Finds 𝑖th order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index 𝑖

Divide: select pivot element 𝑝, Partition(𝑝)
Conquer:
• if 𝑖 = index of 𝑝, then we are done and return 𝑝
• if 𝑖 < index of 𝑝	recurse left. Otherwise, recurse right

Combine: Nothing!
44

CLRS Pseudocode for Quickselect

45

// number of elements in left sub-list + 1

// note adjustment to i when recursing on right side

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment.

A – the list
p – index of first item
r – index of last item
i – find ith smallest item
q – pivot location
k – number on left + 1

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

46

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Conquer Step

47

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Correct position of 𝑝

Recurse on sublist that contains index 𝑖
(add index of the pivot to 𝑖 if recursing right)

Quickselect Run Time (Optimistic)

Then we divide in half each time

48

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

If the pivot is the median:

𝑇 𝑛 = 𝑇 ⁄𝑛 2 + 𝑛 = Θ(𝑛)

Quickselect Run Time (Worst-Case)

Then we shorten by 1 each time

49

If the pivot is the extreme (min/max):

𝑇 𝑛 = 𝑇(𝑛 − 1) + 𝑛

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

= Θ 𝑛-

How to Choose the Pivot?

50

Good choice: Θ 𝑛

Bad choice: Θ 𝑛!

Good Pivot

What makes a good pivot?
• Roughly even split between left and right
• Ideally: median

51

Déjà vu?

But this is the problem that
Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

Good Pivot

Decent pivot: both sides of Pivot >30%

52

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

Fast way to select a “good” pivot
Guarantees pivot is greater than ≈30% of elements and less than ≈30%
of the elements

Main idea: break list into blocks, find the median of each blocks, use the
median of those medians

53

Median of Medians

1. Break list into blocks of size 5

54

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Median of Medians

55

<
<

<
<

<
<

<
<

<
<

<
<

< <
<

<
<

<
<

<
<

< <

Each chunk sorted, chunks ordered by their medians

MedianofMedians
is larger than all

of these

𝑛
5

5

3 !
& ⋅

/
− 2 ≥ '/

!+ − 6 elements

Median of Medians

56

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

⁄𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Number of lists to the “left” Exclude list on the endpoint,
and “middle” list

3 !
& ⋅

/
− 2 ≥ '/

!+ − 6 elements

Median of Medians

57

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

3 !
& ⋅

/
− 2 ≥ '/

!+ − 6 elements

⁄𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Elements greater than
MedianofMedians:

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

58

𝑀 𝑛 + Θ(𝑛)

median of medians algorithm

partition algorithm

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝	recurse left. Else
recurse right (with index 𝑖 − 𝑝)

Combine: Nothing!

59

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+𝑀 𝑛 + Θ(𝑛)

𝑀 𝑛 + Θ(𝑛)

Median of Medians

1. Break list into blocks of size 5

60

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛
5

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝	recurse left. Else
recurse right

Combine: Nothing!

61

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+𝑀 𝑛 + Θ(𝑛)

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝	recurse left. Else
recurse right

Combine: Nothing!

62

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑆

𝑛
5
+ Θ(𝑛) = Θ(𝑛)

Phew! Back to Quicksort

63

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

64

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + Θ(𝑛)

𝑇 𝑛 = Θ(𝑛 log 𝑛)

A Worthwhile Choice?

Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) worst-case run-time
Approach has very large constants
• If you really want Θ(𝑛 log 𝑛), better off using MergeSort

More efficient approach: Random pivot
• Very small constant (very fast algorithm)
• Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

65

Quicksort Running Time

66

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

If the pivot is always (⁄𝑛 10)th order statistic:

Quicksort Running Time

67

𝑛

𝑇(𝑛) = 𝑇 ⁄𝑛 10 + 𝑇 ⁄9𝑛 10 + Θ(𝑛)

⁄𝑛 10 ⁄9𝑛 10

⁄𝑛 100 ⁄9𝑛 100 ⁄9𝑛 100 ⁄81𝑛 100

… … … …

1
1

1 1

1

1
1

1

Θ 𝑛

Θ(log 𝑛)

Θ 𝑛

Θ 𝑛

Quicksort Running Time

68

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)
= Θ 𝑛 log 𝑛

If the pivot is always (⁄𝑛 10)th order statistic:

This is true if the pivot is any ⁄𝑛 𝑘 -. order statistic for any
constant 𝑘 > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get Θ 𝑛 log 𝑛 running time)

Quicksort Running Time

Then we shorten by 𝑑 each time

69

1 5 2 3 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

= Θ(𝑛-)

What’s the probability of this occurring (for a random pivot)?

Probability of Always Choosing 𝒅𝐭𝐡 Order Statistic

We must consistently select pivot from within the first 𝑑 terms

70

Probability first pivot is among 𝑑 smallest: .
/

Probability second pivot is among 𝑑 smallest: .
/0.

Probability all pivots are among 𝑑 smallest:

𝑑
𝑛
×

𝑑
𝑛 − 𝑑

×
𝑑

𝑛 − 2𝑑
×⋯×

𝑑
2𝑑

×1 = 𝑛
𝑑
×

𝑛
𝑑
− 1 ×⋯×1

1!
=

1
𝑛
𝑑 !

Very small probability!

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

We will focus on counting the number of comparisons
For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot
• Element 𝑖 only compared to element 𝑗 if one of them was the

pivot

71

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

72

1 2 3 4 5 6 7 8 9 10 11 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
– Why?
– Every sorting algorithm must compare adjacent elements

Otherwise I would not know their order

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

73

1 2 3 4 5 6 7 8 9 10 11 12

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

Consider the sorted version of the list

Pr we	compare	1	and	12 =
2
12

Assuming pivot is chosen
uniformly at random

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
 Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in right sublist and will be

processed in future invocation of Quicksort

𝑖 𝑗

Pr we	compare	𝑖	and	𝑗 = Pr[we	compare	𝑖	and	𝑗	in	Quicksort 𝑝 + 1,… , 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
 Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in right sublist and will be

processed in future invocation of Quicksort

𝑖 𝑗

Pr we	compare	𝑖	and	𝑗 = Pr[we	compare	𝑖	and	𝑗	in	Quicksort 𝑝 + 1,… , 𝑛

[𝑝 + 1,… , 𝑛] denotes the right
sublist (in some order) that we are

recursively sorting

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 2: Pivot greater than 𝑗
 Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in left sublist and will be

processed in future invocation of Quicksort

𝑖 𝑗

Pr we	compare	𝑖	and	𝑗 = Pr[we	compare	𝑖	and	𝑗	in	Quicksort 1, … , 𝑝

Case 3.1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
 Then 𝑖 and 𝑗 are in different sublists and will never be

compared

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we	compare	𝑖	and	𝑗 = 0

Case 3.2: Pivot is either 𝑖 or 𝑗
 Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we	compare	𝑖	and	𝑗 = 1

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗
Case 1: Pivot less than 𝑖

Pr we	compare	𝑖	and	𝑗 = Pr[we	compare	𝑖	and	𝑗	in	Quicksort 𝑝 + 1,… , 𝑛

Case 2: Pivot greater than 𝑗
Pr we	compare	𝑖	and	𝑗 = Pr[we	compare	𝑖	and	𝑗	in	Quicksort 1, … , 𝑝

Case 3: Pivot in 𝑖, 𝑖 + 1,… , 𝑗
Pr we	compare	𝑖	and	𝑗 = Pr 𝑖	or	𝑗	is	selected	as	pivot =

2
𝑗 − 𝑖 + 1

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

Probability of comparing element 𝑖 with element 𝑗:

Pr we	compare	𝑖	and	𝑗 =
2

𝑗 − 𝑖 + 1

80

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

Probability of comparing element 𝑖 with element 𝑗:

Pr we	compare	𝑖	and	𝑗 =
2

𝑗 − 𝑖 + 1

Expected number of comparisons:

81

Substitution:
𝑘 = 𝑗 − 𝑖

J
123

/03

J
42153

/
2

𝑗 − 𝑖 + 1 = J
123

/03

J
623

/01
2

𝑘 + 1
< 2J

123

/03

J
623

/01
1
𝑘
< 2J

123

/03

J
623

/
1
𝑘

1
𝑘 + 1

<
1
𝑘

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

82

Substitution:
𝑘 = 𝑗 − 𝑖

J
123

/03

J
42153

/
2

𝑗 − 𝑖 + 1 = J
123

/03

J
623

/01
2

𝑘 + 1
< 2J

123

/03

J
623

/01
1
𝑘
< 2J

123

/03

J
623

/
1
𝑘

1
𝑘 + 1 <

1
𝑘

Useful fact: J
623

/
1
𝑘
= Θ(log 𝑛)

Intuition (not proof!):

7
)*!

+
1
𝑘
≈ ;

!

+ 1
𝑥
𝑑𝑥 = ln 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

83

J
123

/03

J
42153

/
2

𝑗 − 𝑖 + 1 = J
123

/03

J
623

/01
2

𝑘 + 1
< 2J

123

/03

J
623

/01
1
𝑘
< 2J

123

/03

J
623

/
1
𝑘

= 2J
123

/03

Θ(log 𝑛) = Θ 𝑛 log 𝑛

Useful fact: J
623

/
1
𝑘
= Θ(log 𝑛)

