CS 3100

Data Structures and Algorithms 2

Lecture 11: Matrix Multiplication, Quickselect

Co-instructors: Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4t edition:
* Section 4.5

Announcements

 Upcoming dates
e PS2 due September 29 (Friday) at 11:59pm
e PA2 due October 8 (Sunday) at 11:59pm
 Quizzes 1 and 2 Thursday October 5 in class

* Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Divide and Conquer

[CLRS Chapter 4]

Divide: -

* Break the problem into multiple
subproblems, each smaller instances of the
original

-

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* |f the subproblems are “small”:
* Solve them directly (base case)

ﬁ When is this an
effective strategy?

Combine:

* Merge solutions to subproblems to obtain H E »

solution for original problem

Trees and Plants

Constraints

How wide can the robot be?

0
()
Q
-
)
G
O
=
qV)
Q.
i)
()]
Q
(7))
ke
o
e
-
G-

Objective

Closest Pair of Points

Given: A list of points @ @

Return: Pair of points with
smallest distance apart @

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair @
of points in each list @

Combine:

e Construct list of points in the boundary

* Sort boundary points by y-coordinate

 Compare each point in boundary to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and @
boundary points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Looks like another O(nlogn)

algorithm — combine step is still ® @
too expensive

Combine:

e Construct list of points in poundary

* Sort boundary points by y-coordinate

 Compare each point in boundary to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and @
boundary points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

Construct list of points in the boundary

Sort boundary points by y-coordinate

Compare each point in boundary to 15 points

above it and save the closest pair —
Output closest pair among left, right, and

boundary points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

* List of points sorted according to y-
coordinate

Sorting boundary points by y-
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:
Closest Pair: (1,5), d; 5
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), d4 ¢
Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Boundary Points: [8,7,6,5,2]

Both of these lists can be computed

by a single pass over the lists

LeftPoints

®

RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points

based on x-coordinate (split at the median x)]]] o
Possible Solution #1 to this? Maintain

Congquer: Recursively compute the closest pair additional information in the recursion
of points in each list * Minimum distance among pairs of
Base case?

points in the list
e List of points sorted according to

Combine: _
e Construct list of points in the runway y-coordinate

(x-coordinate V\.Ilthln distance 5 of medM nstead of sorting runway points by
* Sort runway points by y-coordinate

« Compare each point in runway to 7 or 15 y-coordinate, use this index by y

points above it and save the closest pair coordinate?
* OQutput closest pair among left, right, and
runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair Possible Solution #2 to this?
of points in each list * Merge sorted list of points by y-

Base case? coordinate and construct list of points
Combine: in the runway (sorteo.l by y-coordinate)
* Construct list of points in the runway * Compare each point in runway to 7 or

(x-coordinate within distance & of median 15 points above it and save the closest
* Sort runway points by y-coordinate pair
* Compare each point in runway to 7 or 15 « Output closest pair among left, right,

points above it and save the closest pair
* OQutput closest pair among left, right, and
runway points

and runway points

Closest Pair of Points: Divide and Conquer

What is the running time?

O(nlogn)

T(n) <

T(n) =2T(n/2) + O(n)

Case 2 of Master’s Theorem

T(n) = 0(nlogn)

\

@(n log n) Initialization: Sort points by x-coordinate

C0(1)

2T (n/2)

O(n)
O(n)
O(1)

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Combine:

 Somehow access runway points in increasing
y-coordinate order

 Compare each point in runway to 7 or 15
points above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Multipling Two Matrices

Matrix Multiplication

n —
m 2 31 [12| 14| |6
nl4 5 6|x||8 po| [12
7 8 9l lu4| pel| (18

2+16+42 4+20+48 6+ 24+ 54]

60 72 384

132 162 192
Run time? 0(n3) 204 252 300.

Lower Bound? Q(n®) "

Matrix Multiplication Divide and Conquer

Multiply nXn matrices (A and B)
Divide:

17

Matrix Multiplication Divide and Conquer

Multiply nXn matrices (A and B)

A1 J Aq Bq4 J B4,
A=\ ; < B =) .
i Az q J i Az] B; 1] \ B, |
Combine:
AB = [A1,1B1,1 +A12B21 A11Bi2 t A1,232,2]
Ap1B11 +Az2B71 Az1Bi + A28,

Runtime? T(n)=8T (g) +| 4 (g) ggzltt(i);ns

18

Matrix Multiplication Divide and Conquer

T(n) = 8T (E) + 4 (E)

2

2
n
2

2

T(n)=8T()+n2

a=8,b=2f(n) =n?
Case 1!
nlogr a — pl0g28 — 4,3

T(n) = 6(n°)
Can we do better?

19

Matrix Multiplication Divide and Conquer

Multiply nXn matrices (A and B)

AB))))))))]
)))))))

ldea: Use a Karatsuba-like technique on this

20

Strassen’s Algorithm

Multiply nXn matrices (A and B

-

Aq 4 } Aq B4 } Bis |
A= > B=|[— ——=
A1] i Ao _ B; 1] By, |
Calculate: Find AB:
Q1 = (A1,1 +A2,2)(B1,1 + B;5) 1B — [Ql + 04— Qs + Q 05 + O]
Q2 = (A2 + A22)bBu Q2+ Qs Q1= Q2+ Q5 + Qs

Q3 = A1,1(B12 — Bz2)
Qs = Az2(Bz21 — B11)
Qs = (411 + A12)B2
Q¢ = (A21 — A11)(B11 + Bi2)
Q7 = (A12 — Az2)(Ba1 + By3)

7 Multiplications

18 Additions

2

T(n) = 7T (g) + 18”Z

21

Strassen’s Algorithm

T(n) = 7T(Z) | an

9
a=7b=2f(n) =§n2
Case 1!

nlogb a — nlogz 7 ~ 12807

T(Tl) — @(nlogz 7) ~ @(le'807)

22

-1000000

-800000 /

‘600000 /

INNEREREREERRRRRRARERE RRRRRARRRRERE VAR /
NENEENANERNNERNANRANEAEN //

-200000
log, 7

\\
\
\

— -—ap'_-‘-":’éo 40 50 60 70 80 90 100-

Is This the Fastest?

naive

29 ¢ Best possible is still unknown

I Strassen P
i : an . 2
2.8 | L\\,Bini ot ol Best lower bound: .Q.(Tl)

2.7
2.6
i Schonhage

2.5 i Coppersmith, Winograd Strassen

2.4 I Coppersmith, Winograd Stothers
Williams

I T A S B T R R N | T B TR R | Year 24
1950 1960 1970 1980 1990 2000 2010

Divide and Conquer Algorithms (Thus Far)

Mergesort What they have in common:
Divide: Very easy (i.e. 0(1))

Naive Multiplication
Combine: More complex (2(n))

Karatsuba Multiplication
Closest Pair of Points
Strassen’s Algorithm

25

Like Mergesort:
* Divide and conquer algorithm
* O(nlogn) run time (on expectation)

Unlike Mergesort:
* Divide step is the hard part

* Typically faster than Mergesort (often is the basis of sorting algorithms in
standard library implementations)

26

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element p, Partition(p)
Conquer: recursively sort left and right sublists
Combine: nothing!

27

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 112 (10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

28

Partition Procedure

Initialize two pointers and End

.573121012496.

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

9]
~
w
[HY
N
[HY
o
[HY
N
D
(o)
(©))

(9]
~N
w
[HEY
N
[HY
o
(MY
N
D
(o)
(©))

(9]
~N
w
[HEY
N
[HY
o
(MY
N
D
(o)
(©))

U
~
w
(WY
N
[N
o
[N
N
D
(\o)
(@)

Swap!

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

5 7 3 (12 (10 | 1 2

4

5 7 3 (11 (10 | 1 2

4

10 | 1 2

4

5 7 3 6 | 10 | 1 2

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

5 7 3 6 [10

4
4

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ l
. 5173 |6]| 4]1

4

Remaining item: where do we place the pivot?

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ l
. 5173 |6]| 4]1

Case 1: meet at element < p
Swap » with

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ l
. 5173 |6]| 4]1

4

Case 2: meet at element > p
Swap p with

Partition Procedure Summary

1. Choose the pivot p to be the first element of the list
2. Initialize two pointers (just after »), and End (at end of list)

3. While < End:

* |fvalue of < p, advance to the right

e Otherwise, swap value of value with value of End value, and advance
End to the left

4. If pointers meet at element : swap p with
5. Otherwise, if pointers meet at element > p: swap p with

Run time? O(n)

36

Conquer Step

|
All elements < p All elements > p

Exactly where it belongs!

Recursively sort and Right sublists

37

Quicksort Run Time (Optimistic)

If the pivot is the median:

dLIREIEIE

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time

T(n) =2T(n/2) +n = B(nlogn)

38

Quicksort Run Time (Worst-Case)

If the pivot is the extreme (min/max):

|z fsfsfefef7[s]w]o]u]n

Then we shorten by 1 each time

Tn)=T(n—1)+n
=n+Mn-1)+--+2+1

_n(n+1)
2

= 0(n?) .

Quicksort on a Nearly Sorted List

First element always yields unbalanced pivot

oz s fefs]efr e]s [r]u]n]
Then we shorten by 1 each time
T(n) = 0(n?)

40

How to Choose the Pivot?

Good choice: O(nlogn)

Bad choice: ®@(n?)

Good Pivot

What makes a good pivot?
* Roughly even split between left and right
* |ldeally: median

Can we find median in linear time?
* Yes! Quickselect algorithm

42

Quickselect Algorithm

Algorithm to compute the it order statistic
* jth smallest element in the list
* 1st order statistic: minimum
* nth order statistic: maximum
* (n/2)t™ order statistic: median

43

Quickselect Algorithm

Finds it" order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index i

Divide: select pivot element p, Partition(p)

Conquer:
* if i = index of p, then we are done and return p
* if i <index of p recurse left. Otherwise, recurse right

Combine: Nothing!

44

CLRS Pseudocode for Quickselect

elseif i < k
return RANDOMIZED-SELECT (A, p,q — 1,i)
else return RANDOMIZED-SELECT(A,q + 1,r,i — k)

A —the list

RANDOMIZED-SELECT (A, p,r,i) p — index of first item

. r —index of last item
1 if p== i — find ith smallest item
2 return A[p] g — pivot location
3 g = RANDOMIZED-PARTITION (4, p, 1) k= number on left + 1
4 k=qg—p+1 [/ number of elements in left sub-list + 1
5 ifi== // the pivot value is the answer
6 return A[q]
7
8
9

// note adjustment to i when recursing on right side

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment. 45

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 112 (10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

46

Conquer Step

|
All elements < p All elements > p

Correct position of p

Recurse on sublist that contains index i
(add index of the pivot to i if recursing right)

47

Quickselect Run Time (Optimistic)

If the pivot is the median:

dLIREIEIE

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time

T(n) =Tn/2) +n =0(n)

48

Quickselect Run Time (Worst-Case)

If the pivot is the extreme (min/max):

oz s]sfefefr s m]s[u]n]
Then we shorten by 1 each time

T(n)=T(n—1)+n = 0(n?

49

How to Choose the Pivot?

Good choice: O(n)

Bad choice: ®@(n?)

Good Pivot

What makes a good pivot? Q
* Roughly even split between left and right QQ *
* |deally: median | o“fb
N

But this is the problem that

Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

51

Good Pivot

Decent pivot: both sides of Pivot >30%

T
TTT

>30%

O Select Pivot from
r this range

>30% 52

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than =30% of elements and less than =30%
of the elements

Main idea: break list into blocks, find the median of each blocks, use the
median of those medians

53

Median of Medians

1. Break list into blocks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)
[]

54

Median of Medians

Each chunk sorted, chunks ordered by their medians

N

MedianofMedians
is larger than all
Of these A A A A A

n
5 g

Median of Medians

MedianofMedians
is larger than all
of these A A A A A

y
[n/5]

Elements smaller than 1 [n 3n
3([5'&”—2 = 1o

MedianofMedians: 10

Number of lists to the “left”

— 6 elements

Exclude list on the endpoint,

56

and “middle” list

Median of Medians

MedianofMedians
is larger than all
of these

Elements smaller than
MedianofMedians:
Elements greater than
MedianofMedians:

AN N\ AN AN

A N\ N\ AN AN

< J<Bl<[]<
A JAN JAN AN AN
A N\ N\ AN AN
\]

|
[n/5]

3(1~2 —2)23—n—6elements

2 |5 10
3(1-2 —2)23—n—6elements

2 |5 10

57

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

median of medians algorithm

partition algorithm

58

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i < index of p recurse left. Else
recurse right (with index i — p) 71

<5(5)

Combine: Nothing!

S(n) < S()+M(n) + O(n)

59

10

Median of Medians

1. Break list into blocks of size 5 O(n)

2. Find the median of each chunk O(n)

3. Return median of medians (using Quickselect) ¢ (E)
o 5

Mn)=3S (g) + 0(n)

60

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i < index of p recurse left. Else
recurse right 7n

<5(5;)

Combine: Nothing!

S(n) < S()+M(n) + O(n)

61

10

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i < index of p recurse left. Else
recurse right 7n

<5(5;)

Sn)<S (10) + S (Z) + 0(n) = O(n))

Combine: Nothing!

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

B <[« |- e

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

63

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

B <[« |- e

T(n) =2T(n/2) + 0(n)

T(n) = O(nlogn)

64

A Worthwhile Choice?

Using Quickselect to pick median guarantees 0(n logn) worst-case run-time

Approach has very large constants
* If you really want ®(nlogn), better off using MergeSort

More efficient approach: Random pivot
* Very small constant (very fast algorithm)
* Expected to runin ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

65

Quicksort Running Time

If the pivot is always (n/10) order statistic:

T(n) =T(n/10)+TO9n/10) + O(n)

66

Quicksort Running Time

T(n) =T(n/10) + T(9n/10) + O(n)

- O(n)
/\
n/10 In/10 O(n)
/\ /\

Tl/}{\ ‘971{/1{:(1 97’1{/]{2 81‘7’1//:1\0\0 @(TL)> @(logn)

1

1

1

1 1

Quicksort Running Time

If the pivot is always (n/10) order statistic:

T(n) =T(n/10)+TO9n/10) + O(n)
= O(nlogn)

This is true if the pivot is any (n/k)™ order statistic for any

constant k > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get @(nlogn) running time)

Quicksort Running Time

If the pivot is always d™" order statistic:

Then we shorten by d each time

Tn)=Tn—d)+n
= 0(n?)

What’s the probability of this occurring (for a random pivot)?

69

Probability of Always Choosing d'™™ Order Statistic

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

o e . H d
Probability second pivot is among d smallest: —

Probability all pivots are among d smallest:

Very small probability!
d d d d n

1 1
;Xn—dxn—demxﬁX1= (Ex(g_l)Xle) =@

70

Formal Argument for n log n Average

We will focus on counting the number of comparisons

For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot

* Element i only compared to element j if one of them was the
pivot

71

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
— Why? Otherwise | would not know their order

— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 2

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

2

E uniformly at random

Assuming pivot is chosen

Prlwe compare 1 and 12] =

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

73

Formal Argument for n log n Average

What is the probability of comparing two given elements?

33 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be in right sublist and will be
processed in future invocation of Quicksort

Pr|we compare i and j| = Pr[we compare i and j in Quicksort(|p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

33 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be
processed in future invocation of

[p + 1, ...,n] denotes the right
sublist (in some order) that we are

recursively sorting

Pr|we compare i and j| = Pr[we compare i and j in Quicksort(|p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 2: Pivot greater than j
Then sublist [i,i + 1, ..., j] will be in left sublist and will be
processed in future invocation of Quicksort

Pr{we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

123456.89101112

i J

Case 3.1: Pivot contained in [i + 1, ...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiandj] = 0

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234.6789101112

i J

Case 3.2: Pivotis eitheri orj
Then we will always compare i and j

Pr[we compareiandj] =1

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 1: Pivot less than i
Pr[we compare i and j| = Pr[we compare i and j in Quicksort(|p + 1, ...,n])
Case 2: Pivot greater than j
Pr[we compare i and j| = Pr[we compare i and j in Quicksort([1, ..., p])
Case 3: Pivotin [i,i + 1, ...,]]

2
Pr[we compare i and j| = Pr|i orj is selected as pivot] =j T 1

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
Pr[we compare i and j] =j —T 1

80

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
Pr[we compare i and j] =j —T 1

Expected number of comparisons:

x| =

Substitution:
k=j—i

81

Formal Argument for n log n Average

Substitution:
k=j—i

1 Intuition (not proof!):
Useful fact: o1 M1
;ENL —dx =1lnn

X

82

Formal Argument for n log n Average
;J‘:Zu‘:J_?Jrl:;Z ZZ%

n-1
= 2 z O(logn) = O(nlogn)
i=1

n

1
Useful fact: 2 e O(logn)

M'
lngh

83

