Extract from:
Introduction to Algorithms, 3rd ed.
Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein
The MIT Press

33.4 Finding the closest pair of points

We now consider the problem of finding the closest pair of points in a set Q of $n \geq 2$ points. "Closest" refers to the usual euclidean distance: the distance between points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$. Two points in set Q may be coincident, in which case the distance between them is zero. This problem has applications in, for example, traffic-control systems. A system for controlling air or sea traffic might need to identify the two closest vehicles in order to detect potential collisions.

A brute-force closest-pair algorithm simply looks at all the $\binom{n}{2}=\Theta\left(n^{2}\right)$ pairs of points. In this section, we shall describe a divide-and-conquer algorithm for
this problem, whose running time is described by the familiar recurrence $T(n)=$ $2 T(n / 2)+O(n)$. Thus, this algorithm uses only $O(n \lg n)$ time.

The divide-and-conquer algorithm

Each recursive invocation of the algorithm takes as input a subset $P \subseteq Q$ and arrays X and Y, each of which contains all the points of the input subset P. The points in array X are sorted so that their x-coordinates are monotonically increasing. Similarly, array Y is sorted by monotonically increasing y-coordinate. Note that in order to attain the $O(n \lg n)$ time bound, we cannot afford to sort in each recursive call; if we did, the recurrence for the running time would be $T(n)=2 T(n / 2)+O(n \lg n)$, whose solution is $T(n)=O\left(n \lg ^{2} n\right)$. (Use the version of the master method given in Exercise 4.6-2.) We shall see a little later how to use "presorting" to maintain this sorted property without actually sorting in each recursive call.

A given recursive invocation with inputs P, X, and Y first checks whether $|P| \leq 3$. If so, the invocation simply performs the brute-force method described above: try all $\binom{|P|}{2}$ pairs of points and return the closest pair. If $|P|>3$, the recursive invocation carries out the divide-and-conquer paradigm as follows.

Divide: Find a vertical line l that bisects the point set P into two sets P_{L} and P_{R} such that $\left|P_{L}\right|=\lceil|P| / 2\rceil,\left|P_{R}\right|=\lfloor|P| / 2\rfloor$, all points in P_{L} are on or to the left of line l, and all points in P_{R} are on or to the right of l. Divide the array X into arrays X_{L} and X_{R}, which contain the points of P_{L} and P_{R} respectively, sorted by monotonically increasing x-coordinate. Similarly, divide the array Y into arrays Y_{L} and Y_{R}, which contain the points of P_{L} and P_{R} respectively, sorted by monotonically increasing y-coordinate.
Conquer: Having divided P into P_{L} and P_{R}, make two recursive calls, one to find the closest pair of points in P_{L} and the other to find the closest pair of points in P_{R}. The inputs to the first call are the subset P_{L} and arrays X_{L} and Y_{L}; the second call receives the inputs P_{R}, X_{R}, and Y_{R}. Let the closest-pair distances returned for P_{L} and P_{R} be δ_{L} and δ_{R}, respectively, and let $\delta=\min \left(\delta_{L}, \delta_{R}\right)$.
Combine: The closest pair is either the pair with distance δ found by one of the recursive calls, or it is a pair of points with one point in P_{L} and the other in P_{R}. The algorithm determines whether there is a pair with one point in P_{L} and the other point in P_{R} and whose distance is less than δ. Observe that if a pair of points has distance less than δ, both points of the pair must be within δ units of line l. Thus, as Figure 33.11 (a) shows, they both must reside in the 2δ-wide vertical strip centered at line l. To find such a pair, if one exists, we do the following:

1. Create an array Y^{\prime}, which is the array Y with all points not in the 2δ-wide vertical strip removed. The array Y^{\prime} is sorted by y-coordinate, just as Y is.
2. For each point p in the array Y^{\prime}, try to find points in Y^{\prime} that are within δ units of p. As we shall see shortly, only the 7 points in Y^{\prime} that follow p need be considered. Compute the distance from p to each of these 7 points, and keep track of the closest-pair distance δ^{\prime} found over all pairs of points in Y^{\prime}.
3. If $\delta^{\prime}<\delta$, then the vertical strip does indeed contain a closer pair than the recursive calls found. Return this pair and its distance δ^{\prime}. Otherwise, return the closest pair and its distance δ found by the recursive calls.

The above description omits some implementation details that are necessary to achieve the $O(n \lg n)$ running time. After proving the correctness of the algorithm, we shall show how to implement the algorithm to achieve the desired time bound.

Correctness

The correctness of this closest-pair algorithm is obvious, except for two aspects. First, by bottoming out the recursion when $|P| \leq 3$, we ensure that we never try to solve a subproblem consisting of only one point. The second aspect is that we need only check the 7 points following each point p in array Y^{\prime}; we shall now prove this property.

Suppose that at some level of the recursion, the closest pair of points is $p_{L} \in P_{L}$ and $p_{R} \in P_{R}$. Thus, the distance δ^{\prime} between p_{L} and p_{R} is strictly less than δ. Point p_{L} must be on or to the left of line l and less than δ units away. Similarly, p_{R} is on or to the right of l and less than δ units away. Moreover, p_{L} and p_{R} are within δ units of each other vertically. Thus, as Figure 33.11(a) shows, p_{L} and p_{R} are within a $\delta \times 2 \delta$ rectangle centered at line l. (There may be other points within this rectangle as well.)

We next show that at most 8 points of P can reside within this $\delta \times 2 \delta$ rectangle. Consider the $\delta \times \delta$ square forming the left half of this rectangle. Since all points within P_{L} are at least δ units apart, at most 4 points can reside within this square; Figure 33.11(b) shows how. Similarly, at most 4 points in P_{R} can reside within the $\delta \times \delta$ square forming the right half of the rectangle. Thus, at most 8 points of P can reside within the $\delta \times 2 \delta$ rectangle. (Note that since points on line l may be in either P_{L} or P_{R}, there may be up to 4 points on l. This limit is achieved if there are two pairs of coincident points such that each pair consists of one point from P_{L} and one point from P_{R}, one pair is at the intersection of l and the top of the rectangle, and the other pair is where l intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle, we can easily see why we need to check only the 7 points following each point in the array Y^{\prime}. Still assuming that the closest pair is p_{L} and p_{R}, let us assume without

Figure 33.11 Key concepts in the proof that the closest-pair algorithm needs to check only 7 points following each point in the array Y^{\prime}. (a) If $p_{L} \in P_{L}$ and $p_{R} \in P_{R}$ are less than δ units apart, they must reside within a $\delta \times 2 \delta$ rectangle centered at line l. (b) How 4 points that are pairwise at least δ units apart can all reside within a $\delta \times \delta$ square. On the left are 4 points in P_{L}, and on the right are 4 points in P_{R}. The $\delta \times 2 \delta$ rectangle can contain 8 points if the points shown on line l are actually pairs of coincident points with one point in P_{L} and one in P_{R}.
loss of generality that p_{L} precedes p_{R} in array Y^{\prime}. Then, even if p_{L} occurs as early as possible in Y^{\prime} and p_{R} occurs as late as possible, p_{R} is in one of the 7 positions following p_{L}. Thus, we have shown the correctness of the closest-pair algorithm.

Implementation and running time

As we have noted, our goal is to have the recurrence for the running time be $T(n)=$ $2 T(n / 2)+O(n)$, where $T(n)$ is the running time for a set of n points. The main difficulty comes from ensuring that the arrays X_{L}, X_{R}, Y_{L}, and Y_{R}, which are passed to recursive calls, are sorted by the proper coordinate and also that the array Y^{\prime} is sorted by y-coordinate. (Note that if the array X that is received by a recursive call is already sorted, then we can easily divide set P into P_{L} and P_{R} in linear time.)

The key observation is that in each call, we wish to form a sorted subset of a sorted array. For example, a particular invocation receives the subset P and the array Y, sorted by y-coordinate. Having partitioned P into P_{L} and P_{R}, it needs to form the arrays Y_{L} and Y_{R}, which are sorted by y-coordinate, in linear time. We can view the method as the opposite of the Merge procedure from merge sort in

Section 2.3.1: we are splitting a sorted array into two sorted arrays. The following pseudocode gives the idea.

```
let \(Y_{L}[1\). Y.length \(]\) and \(Y_{R}[1\). Y.length \(]\) be new arrays
\(Y_{L}\).length \(=Y_{R}\).length \(=0\)
for \(i=1\) to \(Y\).length
    if \(Y[i] \in P_{L}\)
        \(Y_{L}\).length \(=Y_{L}\).length +1
        \(Y_{L}\left[Y_{L}\right.\). length \(]=Y[i]\)
    else \(Y_{R}\).length \(=Y_{R}\).length +1
        \(Y_{R}\left[Y_{R}\right.\).length \(]=Y[i]\)
```

We simply examine the points in array Y in order. If a point $Y[i]$ is in P_{L}, we append it to the end of array Y_{L}; otherwise, we append it to the end of array Y_{R}. Similar pseudocode works for forming arrays X_{L}, X_{R}, and Y^{\prime}.

The only remaining question is how to get the points sorted in the first place. We presort them; that is, we sort them once and for all before the first recursive call. We pass these sorted arrays into the first recursive call, and from there we whittle them down through the recursive calls as necessary. Presorting adds an additional $O(n \lg n)$ term to the running time, but now each step of the recursion takes linear time exclusive of the recursive calls. Thus, if we let $T(n)$ be the running time of each recursive step and $T^{\prime}(n)$ be the running time of the entire algorithm, we get $T^{\prime}(n)=T(n)+O(n \lg n)$ and
$T(n)= \begin{cases}2 T(n / 2)+O(n) & \text { if } n>3, \\ O(1) & \text { if } n \leq 3 .\end{cases}$
Thus, $T(n)=O(n \lg n)$ and $T^{\prime}(n)=O(n \lg n)$.

Exercises

33.4-1

Professor Williams comes up with a scheme that allows the closest-pair algorithm to check only 5 points following each point in array Y^{\prime}. The idea is always to place points on line l into set P_{L}. Then, there cannot be pairs of coincident points on line l with one point in P_{L} and one in P_{R}. Thus, at most 6 points can reside in the $\delta \times 2 \delta$ rectangle. What is the flaw in the professor's scheme?

33.4-2

Show that it actually suffices to check only the points in the 5 array positions following each point in the array Y^{\prime}.

