
33.4 Finding the closest pair of points 1039

p

(a) (b)

q

q′

Figure 33.10 The definition of a star-shaped polygon, for use in Exercise 33.3-4. (a) A star-shaped
polygon. The segment from point p to any point q on the boundary intersects the boundary only at q.
(b) A non-star-shaped polygon. The shaded region on the left is the shadow of q, and the shaded
region on the right is the shadow of q0. Since these regions are disjoint, the kernel is empty.

star-shaped polygon P specified by its vertices in counterclockwise order, show
how to compute CH.P / in O.n/ time.

33.3-5
In the on-line convex-hull problem, we are given the set Q of n points one point at
a time. After receiving each point, we compute the convex hull of the points seen
so far. Obviously, we could run Graham’s scan once for each point, with a total
running time of O.n2 lg n/. Show how to solve the on-line convex-hull problem in
a total of O.n2/ time.

33.3-6 ?
Show how to implement the incremental method for computing the convex hull
of n points so that it runs in O.n lg n/ time.

33.4 Finding the closest pair of points

We now consider the problem of finding the closest pair of points in a set Q of
n ! 2 points. “Closest” refers to the usual euclidean distance: the distance between
points p1 D .x1; y1/ and p2 D .x2; y2/ is

p
.x1 " x2/2 C .y1 " y2/2. Two points

in set Q may be coincident, in which case the distance between them is zero. This
problem has applications in, for example, traffic-control systems. A system for
controlling air or sea traffic might need to identify the two closest vehicles in order
to detect potential collisions.

A brute-force closest-pair algorithm simply looks at all the
!

n

2

"
D ‚.n2/ pairs

of points. In this section, we shall describe a divide-and-conquer algorithm for

Tom Horton

Tom Horton
Extract from:
Introduction to Algorithms, 3rd ed.

Thomas H. Cormen, Charles E. Leiserson,
 Ronald L. Rivest,and Clifford Stein
The MIT Press

1040 Chapter 33 Computational Geometry

this problem, whose running time is described by the familiar recurrence T .n/ D
2T .n=2/CO.n/. Thus, this algorithm uses only O.n lg n/ time.

The divide-and-conquer algorithm

Each recursive invocation of the algorithm takes as input a subset P # Q and
arrays X and Y , each of which contains all the points of the input subset P .
The points in array X are sorted so that their x-coordinates are monotonically
increasing. Similarly, array Y is sorted by monotonically increasing y-coordinate.
Note that in order to attain the O.n lg n/ time bound, we cannot afford to sort
in each recursive call; if we did, the recurrence for the running time would be
T .n/ D 2T .n=2/ C O.n lg n/, whose solution is T .n/ D O.n lg2 n/. (Use the
version of the master method given in Exercise 4.6-2.) We shall see a little later
how to use “presorting” to maintain this sorted property without actually sorting in
each recursive call.

A given recursive invocation with inputs P , X , and Y first checks whether
jP j $ 3. If so, the invocation simply performs the brute-force method described
above: try all

!jP j
2

"
pairs of points and return the closest pair. If jP j > 3, the

recursive invocation carries out the divide-and-conquer paradigm as follows.

Divide: Find a vertical line l that bisects the point set P into two sets PL and PR

such that jPLj D djP j =2e, jPRj D bjP j =2c, all points in PL are on or to the
left of line l , and all points in PR are on or to the right of l . Divide the array X
into arrays XL and XR, which contain the points of PL and PR respectively,
sorted by monotonically increasing x-coordinate. Similarly, divide the array Y
into arrays YL and YR, which contain the points of PL and PR respectively,
sorted by monotonically increasing y-coordinate.

Conquer: Having divided P into PL and PR, make two recursive calls, one to find
the closest pair of points in PL and the other to find the closest pair of points
in PR. The inputs to the first call are the subset PL and arrays XL and YL; the
second call receives the inputs PR, XR, and YR. Let the closest-pair distances
returned for PL and PR be ıL and ıR, respectively, and let ı D min.ıL; ıR/.

Combine: The closest pair is either the pair with distance ı found by one of the
recursive calls, or it is a pair of points with one point in PL and the other in PR.
The algorithm determines whether there is a pair with one point in PL and the
other point in PR and whose distance is less than ı. Observe that if a pair of
points has distance less than ı, both points of the pair must be within ı units
of line l . Thus, as Figure 33.11(a) shows, they both must reside in the 2ı-wide
vertical strip centered at line l . To find such a pair, if one exists, we do the
following:

33.4 Finding the closest pair of points 1041

1. Create an array Y 0, which is the array Y with all points not in the 2ı-wide
vertical strip removed. The array Y 0 is sorted by y-coordinate, just as Y is.

2. For each point p in the array Y 0, try to find points in Y 0 that are within ı
units of p. As we shall see shortly, only the 7 points in Y 0 that follow p need
be considered. Compute the distance from p to each of these 7 points, and
keep track of the closest-pair distance ı0 found over all pairs of points in Y 0.

3. If ı0 < ı, then the vertical strip does indeed contain a closer pair than the
recursive calls found. Return this pair and its distance ı0. Otherwise, return
the closest pair and its distance ı found by the recursive calls.

The above description omits some implementation details that are necessary to
achieve the O.n lg n/ running time. After proving the correctness of the algorithm,
we shall show how to implement the algorithm to achieve the desired time bound.

Correctness

The correctness of this closest-pair algorithm is obvious, except for two aspects.
First, by bottoming out the recursion when jP j $ 3, we ensure that we never try to
solve a subproblem consisting of only one point. The second aspect is that we need
only check the 7 points following each point p in array Y 0; we shall now prove this
property.

Suppose that at some level of the recursion, the closest pair of points is pL 2 PL

and pR 2 PR. Thus, the distance ı0 between pL and pR is strictly less than ı.
Point pL must be on or to the left of line l and less than ı units away. Similarly, pR

is on or to the right of l and less than ı units away. Moreover, pL and pR are
within ı units of each other vertically. Thus, as Figure 33.11(a) shows, pL and pR

are within a ı % 2ı rectangle centered at line l . (There may be other points within
this rectangle as well.)

We next show that at most 8 points of P can reside within this ı % 2ı rectangle.
Consider the ı % ı square forming the left half of this rectangle. Since all points
within PL are at least ı units apart, at most 4 points can reside within this square;
Figure 33.11(b) shows how. Similarly, at most 4 points in PR can reside within
the ı % ı square forming the right half of the rectangle. Thus, at most 8 points of P
can reside within the ı % 2ı rectangle. (Note that since points on line l may be in
either PL or PR, there may be up to 4 points on l . This limit is achieved if there are
two pairs of coincident points such that each pair consists of one point from PL and
one point from PR, one pair is at the intersection of l and the top of the rectangle,
and the other pair is where l intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle, we
can easily see why we need to check only the 7 points following each point in the
array Y 0. Still assuming that the closest pair is pL and pR, let us assume without

1042 Chapter 33 Computational Geometry

l

pL
pR

PL
PR

δ

2δ

(a)

PR
PL

(b)

l

coincident points,
 one in PL,
 one in PR

coincident points,
 one in PL,
 one in PR

δδ

δ

Figure 33.11 Key concepts in the proof that the closest-pair algorithm needs to check only 7 points
following each point in the array Y 0. (a) If pL 2 PL and pR 2 PR are less than ı units apart, they
must reside within a ı % 2ı rectangle centered at line l . (b) How 4 points that are pairwise at least ı
units apart can all reside within a ı % ı square. On the left are 4 points in PL, and on the right are 4
points in PR. The ı % 2ı rectangle can contain 8 points if the points shown on line l are actually
pairs of coincident points with one point in PL and one in PR.

loss of generality that pL precedes pR in array Y 0. Then, even if pL occurs as early
as possible in Y 0 and pR occurs as late as possible, pR is in one of the 7 positions
following pL. Thus, we have shown the correctness of the closest-pair algorithm.

Implementation and running time

As we have noted, our goal is to have the recurrence for the running time be T .n/ D
2T .n=2/ CO.n/, where T .n/ is the running time for a set of n points. The main
difficulty comes from ensuring that the arrays XL, XR, YL, and YR, which are
passed to recursive calls, are sorted by the proper coordinate and also that the
array Y 0 is sorted by y-coordinate. (Note that if the array X that is received by a
recursive call is already sorted, then we can easily divide set P into PL and PR in
linear time.)

The key observation is that in each call, we wish to form a sorted subset of a
sorted array. For example, a particular invocation receives the subset P and the
array Y , sorted by y-coordinate. Having partitioned P into PL and PR, it needs to
form the arrays YL and YR, which are sorted by y-coordinate, in linear time. We
can view the method as the opposite of the MERGE procedure from merge sort in

33.4 Finding the closest pair of points 1043

Section 2.3.1: we are splitting a sorted array into two sorted arrays. The following
pseudocode gives the idea.

1 let YLŒ1 : : Y: length! and YRŒ1 : : Y: length! be new arrays
2 YL: length D YR: length D 0
3 for i D 1 to Y: length
4 if Y Œi ! 2 PL

5 YL: length D YL: lengthC 1
6 YLŒYL: length! D Y Œi !
7 else YR: length D YR: lengthC 1
8 YRŒYR: length! D Y Œi !

We simply examine the points in array Y in order. If a point Y Œi ! is in PL, we
append it to the end of array YL; otherwise, we append it to the end of array YR.
Similar pseudocode works for forming arrays XL, XR, and Y 0.

The only remaining question is how to get the points sorted in the first place. We
presort them; that is, we sort them once and for all before the first recursive call.
We pass these sorted arrays into the first recursive call, and from there we whittle
them down through the recursive calls as necessary. Presorting adds an additional
O.n lg n/ term to the running time, but now each step of the recursion takes linear
time exclusive of the recursive calls. Thus, if we let T .n/ be the running time of
each recursive step and T 0.n/ be the running time of the entire algorithm, we get
T 0.n/ D T .n/CO.n lg n/ and

T .n/ D

(
2T .n=2/CO.n/ if n > 3 ;

O.1/ if n $ 3 :

Thus, T .n/ D O.n lg n/ and T 0.n/ D O.n lg n/.

Exercises

33.4-1
Professor Williams comes up with a scheme that allows the closest-pair algorithm
to check only 5 points following each point in array Y 0. The idea is always to place
points on line l into set PL. Then, there cannot be pairs of coincident points on
line l with one point in PL and one in PR. Thus, at most 6 points can reside in
the ı % 2ı rectangle. What is the flaw in the professor’s scheme?

33.4-2
Show that it actually suffices to check only the points in the 5 array positions fol-
lowing each point in the array Y 0.

	Cormen_fm_8x9
	Cormen_ms_8x9

